Class 10 Maths Statistics
Question 1. Find the mean by the direct method:
Solution:
Now,
mean \(\bar{x}=\frac{\sum f_{i x_i}}{\sum f_i}=\frac{1100}{50}=22\)
Question 2. Find the mean using the Direct Method:
Read and Learn More Class 10 Maths
Solution:
Now, mean \(\bar{x}=\frac{\sum f_{i x i}}{\sum f_i}=\frac{13,200}{50}=264\)
Question 3. The mean of the following frequency distribution is 25. Find the value of P using the direct method:
Solution:
Now, Mean
⇒ \(\bar{x}=\frac{\sum f_{i x i}}{\sum f_i}\)
⇒ \(\bar{x}=\frac{1230+15 p}{42+p}\)
⇒ \(25=\frac{1230+15 P}{42+P}\)
⇒ 1050 + 25P = 1230 + 15P
⇒ 25P – 15P = 1230 + 15P
⇒ 10P = 180
⇒ P = \(\frac{180}{10}\)
P = 18
Question 4. The mean of the following distribution is 54. Find the value of P using the direct method:
Solution:
Now, Mean \(\bar{x}=54\)
⇒ \(\bar{x}=\frac{\sum f_{i x_i}}{\sum f_i}\)
54 = \(\frac{2070+70 p}{41+P}\)
2214+54p=2070+70P
70P-54P = 2214-2070
16P = 144
P = \(\frac{144}{16}\)
P = 9
Question 5. Find the mean from the following table using the Short Cut Method:
Solution:
Now, Mean a = 22.5
Mean \(\bar{x}=a+\frac{\sum f_{i d i}}{\sum f_i}\)
⇒ \(\bar{x}=22.5+\frac{0}{67}\)
⇒ \(\bar{x}=22.5\)
Question 6. Find the mean from the following table using the step. deviation method:
Solution:
Now, a = 37.5, h = 5
Mean \(\bar{x}=a+\frac{\sum f_{i u_i}}{\sum f_i} \times h\)
⇒ \(\bar{x}=37.5+\frac{-46}{50} \times 5\)
⇒ \(\bar{x}=37.5-\frac{46}{10}\)
⇒ \(\bar{x}=\frac{375-46}{10}\)
⇒ \(\bar{x}=\frac{329}{10}\)
⇒ \(\bar{x}=32.9\)
Question 7. Find the mean from the following table using the step deviation method:
Solution:
Now, a = 27.5, h = 5
mean \(\bar{x}=a+\frac{\sum f_i u_i}{\sum f_i} \times h\)
⇒ \(\bar{x}=27.5+\frac{-20}{40} \times 5\)
⇒ \(\bar{x}=\frac{220-20}{8}\)
⇒ \(\bar{x}=\frac{200}{8}\)
⇒ \(\bar{x}=25\)
Question 8. Find the median from the following data:
Solution:
Here, N = 58
∴ For Median class \(\frac{N}{2}=\frac{58}{2}=29\)
∴ Median class = 10-13
Here l1 = 10, l2 = 13
⇒ i = 13-10 = 3
f = 0, C.f = 29
∴ Median M = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{f} \times i\)
M = \(10+\frac{29-29}{0} \times 3\)
M = \(10+\frac{0}{0} \times 3\)
M = 10
Question 9. Find the Median from the following data:
Solution:
Here, N = 50
⇒ \(\frac{N}{2}=\frac{50}{2}=25\)
=25
∴ Median Class = 20-30
Now, l1 = 20, l2 = 30
i = 30-20 = 10
f = 12, C = 15
and Median M = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)
M = \(20+\frac{(25-15)}{12} \times 10\)
M = \(20+\frac{10}{6} \times 5\)
M = \(\frac{120+50}{6}\)
M = \(\frac{170}{6}\)
M = 28.33
Question 10. Find the median from the following data:
Solution:
Here N = 50
⇒ \(\frac{N}{2}=\frac{50}{2}=25\)
∴ The median class is 15-20
Now, l1 = 15, l2 = 20, i = 20-15 = 5, f = 15, C = 20
and Median M = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)
M = \(15+\frac{25-20}{15} \times 5\)
M = \(\frac{45+5}{3}\)
M = \(\frac{50}{3}\)
M = 16.67
Question 11. Find the Median for the following frequency distribution:
Solution:
Now, N=340
⇒ \(\frac{N}{2}=\frac{340}{2}=170\)
∴ Median class = 39.5-46.5
∴ l1 = 39.5, l2 = 46.5, i= 46.5-39.5 = 7, f = 102, C = 199
Median M = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{f} \times i\)
M = \(39.5+\frac{(170-199)}{102} \times 7\)
M = \(39.5-\frac{29}{102} \times 7\)
M = \(39.5-\frac{203}{102}\)
M = \(\frac{4029-203}{102}\)
M = \(\frac{3826}{102}\)
M = 36.5
Question 12. Find the Median for the following frequency distribution:
Solution:
Here N = 123
⇒ \(\frac{N}{2}=\frac{123}{2}=61.5\)
∴ Median Class = 20,5-25.5
l1 = 20.5, l2 = 25.5, i = 25.5-20.5 = 5, f = 24, C = 65
Median M = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{F} \times i\)
M = \(20.5+\frac{(61.5-65)}{24} \times 5\)
M = \(20.5-\frac{3.5}{24} \times 5\)
M = \(\frac{492-17.5}{24}\)
M = \(\frac{474.5}{24}\)
M = 20.1
Question 13. If the Median of the following frequency distribution is 32.5. Find the value of F.
Solution:
Here N = 34+ P
⇒ \(\frac{N}{2}=\frac{34+P}{2}\)
Median = 325 ⇒ Median class=30-40
∴ 11 = 30, l2 =40, i = 40-30=10
f = 12, C = 17
M = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{f} \times i\)
32.5 = \(30+\frac{\left(\frac{34+p}{2}-17\right)}{12} \times 10\)
32.5-30 = \(\frac{10}{12}\left(\frac{34+P}{2}-17\right)\)
2.5 = \(\frac{5}{6}\left(\frac{34+p-34}{2}\right)\)
2.5 = \(\frac{5 P}{12}\)
30 = 5P
P = \(\frac{30}{5}\)
P = 6
Question 14. Determine the median for the following income distribution:
Solution:
Here N = 100
⇒ \(\frac{N}{2}=\frac{100}{2}=50\)
∴ Medion class = 300-400
∴ l1 = 300, l2 = 400, i= 400-300 = 100, f = 30, C = 33
M = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)
M = \(300+\frac{50-33}{30} \times 100\)
M = \(300+\frac{17}{30} \times 100\)
M = \(\frac{9000+1700}{30}\)
M = \(\frac{10700}{30}\)
M = 356.67
Question 15. Find the mode of the following frequency distribution:
Solution:
Clearly, the modal class is 60-80 as it has the maximum frequency
∴ l = 60, f1 = 12, f0 = 10, f2 = 6, h = 20
Mode M = \(l+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)
M = \(60+\frac{12-10}{2(12)-10-6} \times 20\)
M = \(60+\frac{2}{24-16} \times 20\)
M = \(60+\frac{2}{8} \times 20\)
M = \(\frac{480+40}{8}\)
M = \(\frac{520}{8}\)
M = 65
Question 16. Given below is the frequency distribution of the heights of players in a school;
Solution:
Clearly, the modal class is 165.5-1685 as it has a maximum frequency
∴ l = 165.5, f1 = 142, f0 =118, f2 = 127, h=3
Mode = \(l+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)
M = \(165.5+\frac{142-118}{2(142)-118-127} \times 3\)
M = \(165.5+\frac{24}{284-245} \times 3\)
M = \(165.5+\frac{24}{39} \times 3\)
M = \(\frac{6454.5+72}{39}\)
M = \(\frac{6526.5}{39}\)
M = 167.35
Question 17. Find the mode of the following frequency distribution:
Solution:
Clearly, the modal class is 50-60, as it has the maximum frequency
∴ l = 50, f1 = 11, f0 = 9, f2 = 6, h = 10
Mode = \(\ell+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)
M = \(50+\frac{11-9}{2(11)-9-6} \times 10\)
M = \(50+\frac{2}{22-15} \times 10\)
M = \(50+\frac{2}{7} \times 10\)
M = \(\frac{350+20}{7}\)
M = \(\frac{370}{7}\)
M = 52.86
Question 18. The following distribution represents the height of 160 students in a class;
Solution:
Clearly, the modal class is 155-160 as it has the maximum
∴ l = 155, f1 = 38, f0 =30, f2 =24, h=5
Mode = \(l+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)
M = \(155+\frac{38-30}{2(38)-30-24} \times 5\)
M = \(155+\frac{8}{76-54} \times 5\)
M = \(155+\frac{40}{22}\)
M = \(\frac{3410+40}{22}\)
M = \(\frac{3450}{22}\)
M = 156.82
Question 19. The following table gives the weekly wage of workers in a factory:
Find (1) the mean (2) the modal class (3) the mode
Solution:
1. Mean:
Mean = \(\frac{\sum f_{i x i}}{\sum f_i}=\frac{5520}{80}\)
= 69
2. Modal class = 55-60
3. Mode: clearly, the Modal class is 55-60 it has the maximum frequency
l = 55, f1 = 20, f0 = 5, f2 = 10, h = 5
M = \(l+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)
M = \(55+\frac{20-5}{2(20)-5-10} \times 5\)
M = \(55+\frac{15}{40-15} \times 5\)
M = \(55+\frac{15}{25} \times 5\)
M = \(\frac{1375+75}{25}\)
M = \(\frac{1450}{25}\)
M = 58
Question 20. The mode of the following Series is 36. Find the missing frequency in it:
Solution:
Clearly, 30-40 is the modal class as mode 36 lies in this class
Here l = 30, f1 = 16, f0 = x (Say), f2 = 12 and h = 10 and mode 36
Mode (M) = \(\ell+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)
36 = \(30+\frac{16-x}{2(16)-x-12} \times 10\)
36 = \(30+\frac{16-x}{32-x-12} \times 10\)
36 = \(30+\frac{16-x}{20-x} \times 10\)
36 – 30 = \(\frac{16-x}{20-x} \times 10\)
6(20-x) = 10(16-x)
120-6x = 160-10x
10x-6x = 160-120
4x = 40
x = \(\frac{40}{4}\)
x = 10
Question 21. Compute the mode of the following data:
Solution:
Clearly, Modal class 29.5 – 29.5 as it has the maximum frequency
∴ l = 19.5, f1 = 23, f0 = 16, f2 = 15, h = 10
M = \(\ell+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)
M = \(19.5+\frac{23-16}{2(23)-16-15} \times 10\)
M = \(19.5+\frac{7}{46-31} \times 10\)
M = \(\frac{292.5+70}{15}\)
M = 24.17
Question 22. Find the mean, Median, and mode of the following data:
Solution:
let assumed mean A = 70, h = 20, Ef = 50, and Σfu = -19
Mean \(\bar{x}=A+\left[h \times \frac{\sum f_u}{\sum f}\right]\)
⇒ \(\bar{x}=70+\left[20 \times \frac{-19}{50}\right]\)
⇒ \(\bar{x}=70+[20 x-0.38]\)
⇒ \(\bar{x}=70-7.6\)
⇒ \(\bar{x}=62.4\)
Here N = 50
⇒ \(\frac{N}{2}=\frac{50}{2}\) = 25
Cumulative frequency just greater than 25 is 36 and the Corresponding class is 60-80.
∴ l1 = 60, f = 12, l2 = 80, C = 24, i = 80-60 = 20
Now, median (M) = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)
M = \(60+\frac{(25-24)}{12} \times 20\)
M = \(60+\frac{1}{12} \times 20\)
M = \(\frac{720+20}{12}\)
M = \(\frac{740}{12}\)
M = 61.66
Mode = 3(Median)-2(Mean)
Mode = 3(61.66)-2(62.4)
= 184.98-124.8
M = 60.18
Question 23. 100 Surnames were randomly picked from a local directory and the distribution of a number of letters of the English alphabet in the Surname was obtained as follows:
Solution:
let assumed mean A = 11.5, h = 3, Σf = 100, Σfu = -106
Mean \(\bar{x}=A+\left[h \times \frac{\sum(f u)}{\sum f}\right]\)
⇒ \(\bar{x}=11.5+\left[3 \times \frac{-106}{100}\right]\)
⇒ \(\bar{x}=11.5+[3 \times-1.06]\)
⇒ \(\bar{x}=11.5-3.18\)
⇒ \(\bar{x}=8.32\)
Here, N = 100
⇒ \(\frac{N}{2}=\frac{100}{2}\)
= 50
Cumulative frequency just greater than 50 is 76 and the corresponding class is 10-13
∴ l1 = 7, f = 40, l2 = 10, C = 36, i = 10-7 = 3
Median (M) = \(\ell+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)
M = \(7+\frac{50-36}{40} \times 3\)
M = \(7+\frac{14}{40} \times 3\)
M = \(\frac{280+42}{40}\)
M = \(\frac{322}{40}\)
M = 8.05
Mode = 3(Median)-2(Mean)
= 3(8.05)-2(8-32)
= 24.15-16.64
M = 7.51
Question 24. The following table gives the daily income of such workers of a factory:
Find the mean, mode, and median of the above data.
Solution:
let assumed mean A = 150, h = 20, Σf = 50, Σfu = -12
Mean \(\bar{x}=A+\left[h \times \frac{\sum f_4}{\sum P}\right]\)
⇒ \(\bar{x}=150+\left[20 \times \frac{-12}{50}\right]\)
⇒ \(\bar{x}=150+[20 x-0.24]\)
⇒ \(\bar{x}=150-4.8\)
⇒ \(\bar{x}=145.2\)
Here N = 50
⇒ \(\frac{N}{2}=\frac{50}{2}=25\)
Cumulative frequency just greater than 25 is 36 and the Corresponding is 120-140
∴ l1 = 120, f = 14, l2 = 140, C = 12, i = 140-120 = 20
Now, Median = \(l_1+\frac{\left(\frac{N}{2}- C\right)}{f} \times i\)
⇒ \(120+\frac{(25-12)}{14} \times 20\)
⇒ \(120+\frac{13}{14} \times 20\)
⇒ \(\frac{1680+260}{14}\)
⇒ \(\frac{1940}{14}\)
M = 138.57
Mode = 3(Median) – 2 (Mean)
M = 3(138.57)-2((45.2)
= 415.71-290.4
= 125.31
Question 25. A Survey regarding the heights (in cm) of so girls in a class was conducted and the following data was obtained:
Solution:
Let assumed Mean A=145, h=10, Σf=50, and Σfu=24
Mean \(\bar{x}=A+\left[h \times \frac{\sum f_u}{\sum f}\right]\)
⇒ \(\bar{x}=145+\left[10 \times \frac{24}{50}\right]\)
⇒ \(\bar{x}=145+[10 \times 0.48]\)
⇒ \(\bar{x}=145+4.8\)
⇒ \(\bar{x}=149.8 \mathrm{~cm}\)
Here N = 50
⇒ \(\frac{N}{2}=\frac{50}{2}=25\)
Cumulative frequency just greater than 25 is 42 and the Corresponding is 150-160
l1 = 150, f = 20, l2 = 160, C = 22, i = 160-150 = 10
Now, Median (M) = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{F} \times i\)
⇒ \(150+\frac{(25-22)}{20} \times 10\)
⇒ \(150+\frac{30}{20}\)
⇒ \(\frac{3000+30}{20}\)
⇒ \(\frac{3030}{20}\)
= 151.5 cm
Mode = 3(Median)-2(Mean)
Mode = 3(151.5)-2(149.8)
= 454.5-299.6
= 154.9
Question 26. The table below shows the daily expenditure on food of 30 households in a locality:
Solution:
Let assumed mean A=225, h = 50, Σf=30, Σfu = -12
Mean \(\bar{x}=A+\left[h \times \frac{\sum f u}{\sum f}\right]\)
⇒ \(\bar{x}=225+\left[50 \times \frac{-12}{30}\right]\)
⇒ \(\bar{x}=225+[50 \times -0.4]\)
⇒ \(\bar{x}=225-20\)
⇒ \(\bar{x}=205\)
Here, N = 30
⇒ \(\frac{N}{2}=\frac{30}{2}=15\)
Median Class = 200-250
l1 = 200, f = 12, l2 = 250, C = 13, i = 250-200 = 50.
Median (M) = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{F} \times i\)
M = \(200+\frac{15-13}{12} \times 50\)
M = \(\frac{2400+100}{12}\)
M = \(\frac{2500}{12}\)
M = 208.33