CBSE Solutions For Class 10 Mathematics Chapter 8 Introduction To Trigonometry

Class 10 Maths Introduction To Trigonometry

Question 1. In ΔABC, ∠B = 90° and, Sin A = \(\frac{3}{5}\) , then find all other trigonometric rotiss for ∠A.
Solution:

Sin A = \(\frac{3}{5}=\frac{perpendicular}{\text { hypo }}\)

CBSE School For Class 10 Maths Chapter 8 Introduction To Trigonometry Then All Other Trigonometric Ratios For Angle A

ΔABC

∠B=90°, BC=3t, AC=5k

AB2 + BC2= AC2

AB2 = AC2 – BC2

= (25k2) – (9k2)

AB2 = 16k2

AB = 4K

Read and Learn More Class 10 Maths

Cos A = \(=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{4 k}{5 k}=\frac{4}{5}\)

tan A = \(\frac{\text {perpendicular }}{\text {base }}=\frac{B C}{A B}=\frac{3 k}{4 k}=\frac{3}{4}\)

Cosec A = \(\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{B C}=\frac{5 k}{3 k}=\frac{5}{3}\)

Sec A = \(\frac{\text { hypotenuse }}{\text { base }}=\frac{A C}{A B}=\frac{5 k}{4 k}=\frac{5}{4}\)

Cot A = \(\frac{\text { base }}{\text { perpendicular }}=\frac{A B}{B C}=\frac{4 k}{3 k}=\frac{4}{3}\)

Question 2. In ΔABC, ∠B = 90° and Cos A = \(\frac{9}{41}\), then find all other trigonometric ratios for ∠A.

Solution:

Cos A = \(\frac{9}{41}\)

CBSE School For Class 10 Maths Chapter 8 Introduction To Trigonometry Then All Other Trigonometric Ratios For Angle A.

ΔABC

∠B=90°, AB=9k, AC = 41k

AB2 + BC2 = AC2

BC2 = AC2 – AB2

BC2 = (41k) = (9k)2

BC2 = 1681k2 – 81k2

BC2 = 1600k2

BC = 40k

Sin A = \(\frac{\text { perpendicular }}{\text { hypotemuse }}=\frac{B C}{A C}=\frac{40}{41}\)

tan A = \(\frac{\text { perpendicular }}{\text { base }}=\frac{B C}{A B}=\frac{40}{9}\)

Cosec A = \(\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{B C}=\frac{41}{40}\)

SecA = \(\frac{\text { hypotenusc }}{\text { base }}=\frac{A C}{A B}=\frac{41}{9}\)

Cot A = \(\frac{\text { base }}{\text { perpendicular }}=\frac{A B}{B C}=\frac{9}{40}\)

Question 3. In ΔABC, ∠A= 90° and tan B= \(\frac{5}{6}\), then find all other trigonometric ratios for ∠B.

Solution:

ΔABC, ∠Ạ = 90°

tan B = \(\frac{\text { Perpendicular }}{\text { Base }}=\frac{5}{6}\)

CBSE School For Class 10 Maths Chapter 8 Introduction To Trigonometry Then All Other Trigonometric Ratios For Angle B

AC = 6K, BC=5K

AB2 = AC2+BC2

AB2 = (6k)2 + (5k)2

AB2 = 36k2 +25k2

AB2 = 61k2

AB = \(\sqrt{61 k}\)

Sin B = \(\frac{\text { Perpendicular }}{\text { hyotenuse }}=\frac{B C}{A B}=\frac{5 K}{\sqrt{61 K}}=\frac{5}{\sqrt{61}}\)

Cos B = \(\frac{\text { base }}{\text { hypotenuse }}=\frac{A C}{A B}=\frac{6 k}{\sqrt{61 k}}=\frac{6}{\sqrt{61}}\)

Cosec B = \(\frac{\text { hypotenuse }}{\text {Perpendicular}}=\frac{A B}{B C}=\frac{\sqrt{61}}{5}\)

Sec B = \(\frac{\text { hypotenuse }}{\text { base }}=\frac{A B}{A C}=\frac{\sqrt{61}}{6}\)

Cot B = \(\frac{\text { base }}{\text { perpendicular }}=\frac{A C}{B C}=\frac{6}{5}\)

CBSE Class 10 Maths Solutions Introduction To Trigonometry

Question 4. In ΔPQR, ∠R = 90° and Cosec P =\(\frac{13}{5}\), then find all trignometric ratio for ∠Q.

Solution:

ΔPQR, ∠R=90°

Cosec P = \(=\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{13}{5}=\frac{P Q}{Q R}\)

CBSE School For Class 10 Maths Chapter 8 Introduction To Trigonometry Then All Other Trigonometric Ratios For Angle Q

PR2 + QR2 = PQ2

PQ = 13K, QR = 5k

PR2 = PQ2 – QR2

= (13k)2– (5k)2

PR2 = 169k2-25k2

PR2 = 144k2

PR = 12k

Sin Q = \(\frac{\text { perpendicular }}{\text { hypotenuesc }}=\frac{Q R}{P Q}=\frac{5 K}{13 K}=\frac{5}{13}\)

Cos Q = \(\frac{\text { base }}{\text { hypdenuse }}=\frac{P R}{P Q}=\frac{12 k}{13 k}=\frac{12}{13}\)

tan Q = \(\frac{\text { perpendicular }}{\text { base }}=\frac{Q R}{P R}=\frac{5 k}{12 k}=\frac{5}{12}\)

Sec Q = \(\frac{\text { hypotenuse }}{\text { base }}=\frac{P Q}{P R}=\frac{13 k}{12 k}=\frac{13}{12}\)

Cot Q = \(=\frac{\text { base }}{\text { perpendicular }}=\frac{P R}{Q R}=\frac{12 k}{5 k}=\frac{12}{5}\)

Question 5. In ΔABC, ∠C = 90° and Sec B = \(\frac{5}{4}\), then find all other trigonometric ratios for ∠B.

Solution:

SecB = \(\frac{\text { hypo }}{\text { base }}=\frac{5}{4}=\frac{A B}{A C}\)

CBSE School For Class 10 Maths Chapter 8 Introduction To Trigonometry Then All Other Trigonometric Ratios For Angle B.

AB = 5K, AC = 4K

BC2 = AB2 – AC2

BC2 = (5k)2 = (4k)2

BC2 = 25k2 – 16k2

BC2 = 9k2

BC = 3K

SinB = \(\frac{\text { perpendiular }}{\text { hypo }}=\frac{B C}{A C}=\frac{3 k}{4 k}=\frac{3}{4}\)

COS B = \(\frac{\text { base }}{\text { hypo }}=\frac{A B}{A C}=\frac{5 k}{4 k}=\frac{5}{4}\)

tan B = \(=\frac{\text { perpendicular }}{\text { base }}=\frac{B C}{A B}=\frac{3 k}{5 k}=\frac{3}{5}\)

Cosec B = \(\frac{\text { hypo }}{\text { base }}=\frac{A C}{B C}=\frac{4 k}{3 k}=\frac{4}{3}\)

Cot B = \(=\frac{\text { base }}{\text { perpendicular }}=\frac{A B}{B C}=\frac{5 k}{3 k}=\frac{5}{3}\)

Question 6. If tanθ = 2, then they find the value of \(\frac{2 \sin \theta \cos \theta}{\cos ^2 \theta-\sin ^2 \theta}\)

Solution:

tanθ = 2 = \(\frac{\sin \theta}{\cos \theta}=\frac{2}{1}\)

⇒ \(\frac{2 \sin \theta \cos \theta}{\cos ^2 \theta-\sin ^2 \theta}\)

⇒ \(\frac{2(2)(1)}{(1)^2-(2)^2}\)

⇒ \(\frac{4}{1-4}\)

⇒ \(\frac{-4}{3}\)

Question 7. If tanθ = \(\tan \theta=\frac{a}{b},\), then find the value of \(\frac{2 \sin \theta-3 \cos \theta}{2 \sin \theta+3 \cos \theta}\)

Solution:

⇒ \(\tan \theta=\frac{a}{b}\)

⇒ \(\frac{\sin \theta}{\cos \theta}=\frac{a}{b}\)

⇒ \(\frac{2 \sin \theta-3 \cos \theta}{2 \sin \theta+3 \cos \theta}\)

⇒ \(\frac{2 a-3 b}{2 a+3 b}\)

Question 8. If tanθ = \(\frac{3}{5}\), then find the Value of \(\frac{2 \sin \theta-3 \cos \theta}{2 \sin \theta+3 \cos \theta}\)

Solution:

⇒ \(\tan \theta=\frac{3}{5}\)

⇒ \(\frac{\sin \theta}{\cos \theta}=\frac{3}{5}\)

⇒ \(\frac{3 \sin \theta+4 \cos \theta}{3 \sin \theta-4 \cos \theta}\)

⇒ \(\frac{3(3)+4(5)}{3(3)-4(5)}\)

⇒ \(\frac{9+20}{9-20}\)

⇒ \(\frac{-29}{11}\)

Question 9. Find the value of Sin 60° Cos 30° – Cos 60° sin 30°.

Solution:

Sin 60° Cos 30°- Cos 60° Sin 30°

⇒ \(\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\)

⇒ \(\left(\frac{\sqrt{3}}{2}\right)^2-\left(\frac{1}{2}\right)^2\)

⇒ \(\frac{3}{4}-\frac{1}{4}\)

⇒ \(\frac{12-4}{16}\)

⇒ \(\frac{8}{16}\)

⇒ \(\frac{1}{2}\)

Question 10. Find the Value of \(\frac{2 \tan 30^{\circ}}{1-\tan ^2 30^{\circ}}\)

Solution:

⇒ \(\frac{2 \tan 30^{\circ}}{1-\tan ^2 30^{\circ}}\)

⇒ \(\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1-\left(\frac{1}{\sqrt{3}}\right)^2}\)

⇒ \(\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}\)

⇒ \(\frac{\frac{2}{\sqrt{3}}}{\frac{3-1}{3}}\)

⇒ \(\frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}}\)

⇒ \(\sqrt{3}\)

Question 11. Find the value of 2sin 30° Cos30°

Solution:

2 sin 30° Cos 30°

⇒ \(2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)\)

⇒ \(2\left(\frac{\sqrt{3}}{4}\right)\)

⇒ \(\frac{\sqrt{3}}{2}\)

Question 12. Show that: 5 Cos2 60° + 4 sec2 30° tan2 4s° + Cos2 90° = \(\frac{67}{12}\)

Solution:

5 Cos2 60° + 4 Sec2 30° – tan2 45° + Cos2 90°

⇒ \(5\left(\frac{1}{2}\right)^2+4\left(\frac{2}{\sqrt{3}}\right)^2-1+(0)^2\)

⇒ \(5\left(\frac{1}{4}\right)+4\left(\frac{4}{3}\right)-1\)

⇒ \(\frac{5}{4}+\frac{16}{3}-1\)

⇒ \(\frac{3 \times 5+4 \times 16-12}{12}\)

⇒ \(\frac{15+64-12}{12}\)

⇒ \(\frac{67}{12}\)

Question 13. Find the value of 4sin2 30° + tan2 60° + Sec2 45°

Solution:

4sin2 30°+ tan2 60°+ Sec2 45°.

⇒ \(4\left(\frac{1}{2}\right)^2+(\sqrt{3})^2+(\sqrt{2})^2\)

⇒ \(4\left(\frac{1}{4}\right)+3+2\)

= 1+3+2

= 6

Question 14. Find the Value of \(\frac{\sin 30^{\circ}}{\cos ^2 45^{\circ}}-\tan ^2 60^{\circ}+3 \cos 90^{\circ}+\sin 0^{\circ}\)

Solution:

⇒ \(\frac{\sin 30^{\circ}}{\cos ^2 45^{\circ}}-\tan ^2 60^{\circ}+3 \cos 90^{\circ}+\sin 0^{\circ}\)

⇒ \(\frac{\frac{1}{2}}{\left(\frac{1}{\sqrt{2}}\right)^2}-(\sqrt{3})^2+3(0)+0\)

⇒ \(\frac{\frac{1}{2}}{\frac{1}{2}}-3\)

⇒ 1 – 3 = -2

Question 15. Evaluate: \(\frac{\sin ^2 30^{\circ}+\sin ^2 45^{\circ}-4 \cot ^2 60^{\circ}}{2 \sin 30^{\circ} \cos 30^{\circ}+\frac{1}{2} \tan 60^{\circ}}\)

Solution:

⇒ \(\frac{\sin ^2 30^{\circ}+\sin ^2 45^{\circ}-4 \cot ^2 60^{\circ}}{2 \sin 30^{\circ} \cos 30^{\circ}+\frac{1}{2} \tan 60^{\circ}}\)

⇒ \(\frac{\left(\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{2}}\right)^2-4\left(\frac{1}{\sqrt{3}}\right)^2}{2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{2}(\sqrt{3})}\)

⇒ \(\frac{\frac{1}{4}+\frac{1}{2}-4\left(\frac{1}{3}\right)}{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}\)

⇒ \(\frac{\frac{1}{4}+\frac{1}{2}-\frac{4}{3}}{\frac{2 \sqrt{3}}{4}}\)

⇒ \(\frac{\frac{1}{6}-\frac{4}{3}}{\frac{2 \sqrt{3}}{4}}\)

⇒ \(\frac{\frac{1-8}{6}}{\frac{2 \sqrt{3}}{4}}\)

⇒ \(\frac{\frac{-7}{6}}{\frac{2 \sqrt{3}}{4}}\)

⇒ \(\frac{\frac{-7}{6}}{\frac{\sqrt{3}}{2}}\)

⇒ \(\frac{-7}{12 \sqrt{3}}\)

Question 16. Show that: \(\sin 60^{\circ}=\frac{2 \tan 30^{\circ}}{1+\tan ^2 30^{\circ}}\)

Solution:

⇒ \(\sin 60^{\circ}=\frac{2 \tan 30^{\circ}}{1+\tan ^2 30^{\circ}}\)

⇒ \(\frac{\sqrt{3}}{2}=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1+\left(\frac{1}{\sqrt{3}}\right)^2}\)

⇒ \(\frac{\sqrt{3}}{2}=\frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}}\)

⇒ \(\frac{\sqrt{3}}{2}=\frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}\)

⇒ \(\frac{\sqrt{3}}{2}=\frac{1}{\frac{2}{\sqrt{3}}}\)

⇒ \(\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}\)

Question 17. Show that: Cos2 60°- Sin2 60° = -Sin30°

Solution:

Cos2 60°-sin260°= -Sin30°

⇒ \(\frac{1}{4}-\frac{3}{4}= -\frac{1}{2}\)

⇒ \(\frac{-2}{4}=\frac{-1}{2}\)

⇒ \(\frac{-1}{2}=\frac{-1}{2}\)

Question 18. Show that: tan 60° = \(\tan 60^{\circ}=\frac{2 \tan 30^{\circ}}{1-\tan ^2 30^{\circ}}\)

Solution:

⇒ \(\tan 60^{\circ}=\frac{2 \tan 30^{\circ}}{1-\tan ^2 30^{\circ}}\)

⇒ \(\sqrt{3}=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1-\left(\frac{1}{\sqrt{3}}\right)^2}\)

⇒ \(\sqrt{3}=\frac{2 / \sqrt{3}}{1-\frac{1}{3}}\)

⇒ \(\sqrt{3}=\frac{2/ \sqrt{3}}{\frac{3-1}{3}}\)

⇒ \(\sqrt{3}=\frac{2 / \sqrt{3}}{2 / 3}\)

⇒ \(\sqrt{3}=\frac{1}{1 / \sqrt{3}}\)

⇒ \(\sqrt{3}=\sqrt{3}\)

Question 19. Show that: \({Cos} 30^{\circ}=\sqrt{\frac{1+\cos 60^{\circ}}{2}}\)

Solution:

⇒ \({Cos} 30^{\circ}=\sqrt{\frac{1+\cos 60^{\circ}}{2}}\)

⇒ \(\frac{\sqrt{3}}{2}=\sqrt{\frac{1+\frac{1}{2}}{2}}\)

⇒ \(\frac{\sqrt{3}}{2}=\sqrt{\frac{2+1}{2}}\)

⇒ \(\frac{\sqrt{3}}{2}=\sqrt{\frac{\frac{2+1}{2}}{2}}\)

⇒ \(\frac{\sqrt{3}}{2}=\sqrt{\frac{\frac{3}{2}}{2}}\)

Question 20. Evaluate: \(\frac{\tan 45^{\circ}}{2 \sin 30^{\circ}-\cos 60^{\circ}}\)

Solution:

⇒ \(\frac{\tan 45^{\circ}}{2 \sin 30^{\circ}-\cos 60^{\circ}}\)

⇒ \(\frac{1}{2\left(\frac{1}{2}\right)-\frac{1}{2}}\)

⇒ \(\frac{1}{1-\frac{1}{2}}\)

⇒ \(\frac{1}{\frac{2-1}{2}}\)

⇒ \(\frac{1}{\frac{1}{2}}\)

= 2

Question 21. If A = 45°, then show that: Cos 2A = Cos2A – Sin2A

Solution:

Given A = 45°

Cos2(45°) = Cos2(45°)-Sin2(45°)

Cos 90° = \(\left(\frac{1}{\sqrt{2}}\right)^2-\left(\frac{1}{\sqrt{2}}\right)^2\)

0 = \(\frac{1}{2}-\frac{1}{2}\)

0 = 0

Question 22. If A=30° and B=60°, then show that: Cos (A+B) = CosA CosB – Sin A Sin B

Solution:

Given A= 30°, B=60°

Cos (30°+60°) = Cos 30° Cos 60° – Sin 30° Sin60°

⇒ \(\cos 90^{\circ}=\frac{\sqrt{3}}{2}\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right) \frac{\sqrt{3}}{2}\)

0 = \(\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}\)

0=0

Question 23. If A = 30°, then show that: \(\tan 2 A=\frac{2 \tan A}{1-\tan ^2 A}\)

Solution:

Given A = 30°

tan 2(30°) = \(\frac{2 \tan 30^{\circ}}{1-\tan ^2 30^{\circ}}\)

tan 60° = \(\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1-\left(\frac{1}{\sqrt{3}}\right)^2}\)

⇒ \(\sqrt{3}=\frac{2 / \sqrt{3}}{1-\frac{1}{3}}\)

⇒ \(\sqrt{3}=\frac{2 / \sqrt{3}}{\frac{3-1}{3}}\)

⇒ \(\sqrt{3}=\frac{2/\sqrt{3}}{2 / 3}\)

⇒ \(\sqrt{3}=\sqrt{3}\)

Question 24. If \(\cos \theta=\frac{\sqrt{3}}{2}\), then find the value of Sin 3θ.

Solution:

⇒ \(\cos \theta=\frac{\sqrt{3}}{2}\)

Cos θ = Cos30°

θ = 30°

= Sin 3θ

= Sin 3(30°)

= Sin 90°

= 1

Question 25. If tan (A+B) = \(\sqrt{3}\) and Sin (A-B) = \(\frac{1}{2}\), then find the value of tan (2A-3B)

Solution:

tan (A+B)= \(\sqrt{3}\)

Sin (A-B)= \(\frac{1}{2}\)

tan (2A-3B)

tan (A+B)= \(\sqrt{3}\)

A+B = 60°

Sin (A-B) = Sin 30° =) A-B = 30°

Acting equations

CBSE School For Class 10 Maths Chapter 8 Introduction To Trigonometry The Value Of Tan 2A minus 3B Adding Equations

⇒ \(A=\frac{90^{\circ}}{2}=45^{\circ}\)

Subtracting equations

CBSE School For Class 10 Maths Chapter 8 Introduction To Trigonometry The Value Of Tan 2A minus 3B Substracting Equations

⇒ \(B=\frac{30^{\circ}}{2}\)

B = 15°

tan (2A-3B)

= tan (2(45°)-3((5°))

= tan (90°-45°)

= tan 45° = 1

Question 26. If A+B = 90° and tan A = \(\sqrt{3}\), then find the Value of B.

Solution:

A+B=90°

tan A = \(\sqrt{3}\)

tan A = tan 60°

A = 60°

60°+B=90°

B = 30°

Question 27. If A-B = 30° and Sin A = \(\frac{\sqrt{3}}{2}\), then find the value of B.

Solution:

A-B = 30°

Sin A = \(\frac{\sqrt{3}}{2}\)

Sin A = Sin 60°

A = 60°

60°-B = 30°

B = 30°

Question 28. \(\frac{1}{1+\tan ^2 \theta}+\frac{1}{1+\cos ^2 \theta}=1\)

Solution:

⇒ \(\frac{1}{1+\tan ^2 \theta}+\frac{1}{1+\cot ^2 \theta}\)

⇒ \(\frac{1}{1+\frac{\sin ^2 \theta}{\cos ^2 \theta}}+\frac{1}{1+\frac{\cos ^2 \theta}{\sin ^2 \theta}}\)

⇒ \(\frac{1}{\frac{\cos ^2 \theta+\sin ^2 \theta}{\cos ^2 \theta}}+\frac{1}{\frac{\sin ^2 \theta+\cos ^2 \theta}{\sin ^2 \theta}}\)

⇒ \(\frac{\cos ^2 \theta+\sin ^2 \theta}{1}\)

= 1 = R.H.S

Question 29. \(\sin ^2 \theta+\frac{1}{1+\tan ^2 \theta}=1\)

Solution:

⇒ \(\sin ^2 \theta+\frac{1}{1+\tan ^2 \theta}\)

⇒ \(\sin ^2 \theta+\frac{1}{1+\frac{\sin ^2 \theta}{\cos ^2 \theta}}\)

⇒ \(\sin ^2 \theta+\frac{\cos ^2 \theta}{1}\)

⇒ \(\sin ^2 \theta+\cos ^2 \theta\)

= 1 = R.H.S

Question 30. \(1+\frac{\cos ^2 \theta}{\sin ^2 \theta}-{cosec}^2 \theta=0\)

Solution:

⇒ \(1+\frac{\cos ^2 \theta}{\sin ^2 \theta}-{cosec}^2 \theta \Rightarrow \text { L.H.S }\)

⇒ \(1+\frac{\cos ^2 \theta}{\sin ^2 \theta}-\frac{1}{\sin ^2 \theta}\)

⇒ \(\frac{\sin ^2 \theta+\cos ^2 \theta-1}{\sin ^2 \theta}\)

⇒ \(\frac{1-1}{\sin ^2 \theta}=0=\text { R.H.S }\)

Question 31. \(\frac{1+\tan ^2 \theta}{{cosec}^2 \theta}=\tan ^2 \theta\)

Solution:

⇒ \(\text { L.H.S }=\frac{1+\tan ^2 \theta}{{cosec}^2 \theta}\)

⇒ \(\frac{1+\frac{\sin ^2 \theta}{\cos ^2 \theta}}{\frac{1}{\sin ^2 \theta}}\)

⇒ \(\frac{\frac{\cos ^2 \theta+\sin ^2 \theta}{\cos ^2 \theta}}{\frac{1}{\sin ^2 \theta}}\)

⇒ \(=\frac{1}{\cos ^2 \theta} \times \frac{\sin ^2 \theta}{1}\)

⇒ \(\tan ^2 \theta=\text { R.HS }\)

Question 32. Prove that: Cosec A-Cot A = \(\frac{1}{{cosec} A+\cot A}\)

Solution:

L.H.S = CosecA – Cota = \(({cosec} A-\cot A) \cdot \frac{({cosec} A+\cot A)}{({cosec} A+\cot A)}\)

⇒ \(\frac{{cosec}^2 A-\cot ^2 A}{{cosec} A+\cot A}\)

⇒ \(\frac{1}{{cosec} A+\cot A}\)

= R.H.S

Question 33. Prove that \(\frac{\sec A+1}{\tan A}=\frac{\tan A}{{Sec} A-1}\)

Solution:

L.H.S = \(\frac{\sec A+1}{\tan A}=\frac{\sec A+1}{\tan A} \times \frac{\sec A-1}{\sec A-1}\)

⇒ \(\frac{\sec ^2 A-1}{\tan A(\sec A-1)}=\frac{\tan ^2 A}{\tan A(\sec A-1)}\)

⇒ \(\frac{\tan A}{(\sec A-1)}\)

= R.H.S

Question 34. Check whether the equation \(\frac{\tan \phi+\sin \phi}{\tan \phi-\sin \phi}=\frac{\sec \phi+1}{\sec \phi-1}\) is an identity or not?

Solution:

L.H.S = \(\frac{\tan \phi+\sin \phi}{\tan \phi-\sin \phi}\)

⇒ \(\frac{\frac{\sin \phi}{\cos \phi}+\sin \phi}{\frac{\sin \phi}{\cos \phi}-\sin \phi}\)

⇒ \(\frac{\sin \phi \sec \phi+\sin \phi}{\sin \phi \sec \phi-\sin \phi}\)

⇒ \(\frac{\sin \phi(\sec \phi+1)}{\sin \phi(\sec \phi-1)}\)

⇒ \(\frac{\sec \phi+1}{\sec \phi-1}\)

= R.H.S

Question 35. If \(\cos ^2 30^{\circ}+\cos ^2 45^{\circ}+\cos ^2 60^{\circ}=x\), then find the value of “x”.

Solution:

⇒ \(\cos ^2 30^{\circ}+\cos ^2 45^{\circ}+\cos ^2 60^{\circ}=x\)

⇒ \(x=\left(\frac{\sqrt{3}}{2}\right)^2+\left(\frac{1}{\sqrt{2}}\right)^2+\left(\frac{1}{2}\right)^2\)

⇒ \(x=\frac{3}{4}+\frac{1}{2}+\frac{1}{4}\)

⇒ \(x=\frac{6+4+2}{8}\)

⇒ \(x=\frac{12}{8}\)

⇒ \(x=\frac{3}{2}\)

Question 36. Without using trigonometric tables, evaluate:

1. \(\frac{\sin 11^{\circ}}{\cos 79^{\circ}}\)

Solution:

⇒ \(\frac{\sin 11^{\circ}}{\cos 79^{\circ}}=\frac{\sin 11^{\circ}}{\left.\cos \left(90^{\circ}-79\right)^{\circ}\right)}=\frac{\sin 11^{\circ}}{\sin 11^{\circ}}=1\)

2. \(\frac{\sec 15^{\circ}}{{cosec} 75^{\circ}}\)

Solution:

⇒ \(\frac{\sec 15^{\circ}}{{cosec} 75^{\circ}}=\frac{\sec 15^{\circ}}{{cosec}\left(90^{\circ}-75^{\circ}\right)}=\frac{\sec 15^{\circ}}{{cosec} 15^{\circ}}=1\)

3. \(\frac{\tan 54^{\circ}}{\cot 36^{\circ}}\)

Solution:

⇒ \(\frac{\tan 54^{\circ}}{\cot 36^{\circ}}=\frac{\tan 54^{\circ}}{\cot \left(90^{\circ}-36^{\circ}\right)}=\frac{\tan 54^{\circ}}{\cot \left(90^{\circ}-36^{\circ}\right)}=\frac{\tan 54^{\circ}}{\tan 54{ }^{\circ}}=1\)

Question 37. Evaluate: tan42° – Cot 48°

Solution:

tan 42°-Cot 48° = tan 42°- Cot (90°- 42°)

tan42°-tan 42°

= 0

Question 38. Evaluate: Sex 36° – Cosec 54°

Solution:

Sec 36°- Cosec 54° = Sec 36° – Cosec (90°-36°)

= Sec 36° – Sec 36°

= 0

Question 39. Prove that: Sin 42°Cos 48°+ Sin 48° Cos42° = 1

Solution:

L.H.S= Sin 42° Cos48° + Sin48° Cos 42°

= Sin 42°cos (90°-42°)+ Sin(90° – 42°) Cos 42°

= Sin 42° Sin 42° + Cos42° Cos42°

Sin2 42° + Cos2 42°

= 1

Question 40. If Sin 3A = Cos(A-26°) where 3A is an acute angle, then find the value of A.

Solution:

Given that,

Sin 3A = Cos (A-26°)

Cos (90°-3A) = Cos (A-26°)

90°-3A = A-26°

-4A = -116°

A = 29°

CBSE Solutions For Class 10 Mathematics Chapter 9 Some Applications of Trigonometry

Class 10 Maths Some Applications of Trigonometry

1. The length of the Shadow of a vertical pole is \(\frac{1}{\sqrt{3}}\) times its height. Show that the angle of elevation of the Sun is 60°.

Solution:

Let PQ be a vertical pole whose height is h. Its Shadow is OQ whose height is \(\frac{h}{\sqrt{3}}\)

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry The Length Of The Shadow A Vertical Pole

Let the angle of elevation of the Sun is ∠POQ = 0

In APOQ,

⇒ \(\tan \theta=\frac{P Q}{O Q}=\frac{h}{h / \sqrt{3}}=\sqrt{3}=\tan 60^{\circ}\)

θ = 60°

∴ The angle of elevation of Sun = 60°

Read and Learn More Class 10 Maths

2. If a tower 30m high, casts a shadow \(10 \sqrt{3} \mathrm{~m}\) long on the ground, then what is the angle of elevation of the Sun?

Solution:

It is given that AB = 30m be the tower and BC = \(10 \sqrt{3} \mathrm{~m}\) m be its shadow on the ground.

Let θ be the angle of elevation.

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry The Angle Of Elevation Of The Sun

In a right triangle,

tan θ = \(\frac{AB}{BC}\)

⇒ \(\frac{30}{10 \sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{3}\)

= tan 60°

θ = 60°

∴ Hence, the angle of elevation θ = 60°

3. A ladder 15 meters long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

Solution:

Let PR be a ladder of length 15m and QR, a wall of height h.

Given that ∠PRQ = 60°

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry A Ladder 15 Meters Long Just Reaches The Top Of A Vertical Wall

In ΔPQR,

Cos 60° = \(\frac{h}{PR}\) = \(\frac{1}{2}\) = \(\frac{h}{15}\)

⇒ h = \(\frac{15}{2}\)m

∴ Height of the wall = \(\frac{15}{2} m\)

4. A Circus artist is climbing a 20m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the Pole, if the angle made by the rope with the ground level is 30°.

Solution:

In ΔABC,

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry The Angle Made By The Rope With The Ground Level Is 30 Degrees

Sin 30°= \(\frac{A B}{A C}\)

⇒ \(\frac{1}{2}=\frac{A B}{20}\)

AB = 10

∴ Height of pole = 10m

5. A tree breaks due to stom and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8m. Find the height of the tree.

Solution:

Let the part CD of the tree BD broken in air and touches the ground at point A.

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry The Distance Between The Foot Of The Tree And The Height Of The Tree

According to the problem,

AB = 8M

and ∠BAC = 30°

In ΔABC,

tan 30° = \(\frac{BC}{AB}\)

⇒ \(\frac{1}{\sqrt{3}}=\frac{B C}{8}\)

⇒ \(B=\frac{8}{\sqrt{3}} \mathrm{~m}\)

and Cos 30° = \(\frac{A B}{A C} \Rightarrow \frac{\sqrt{3}}{2}=\frac{8}{A C}\)

AC = \(\frac{16}{\sqrt{3}} m\)

CD = \(\frac{16}{\sqrt{3}} m\) (AC = CD)

Now, the height of tree = BC + CD

⇒ \(\frac{8}{\sqrt{3}}+\frac{16}{\sqrt{3}}=\frac{24}{\sqrt{3}}=8 \sqrt{3} \mathrm{~m}\)

CBSE Class 10 Maths Solutions Some Applications Of Trigonometry

6. The angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of the tower, is 30°: Find the height of the tower.

Solution:

Let AB be the tower.

The angle of elevation of the top of the tower from Point C, 30m away from A is 30°

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry The Angle Of Elevation Of The Top Of A Towe From A Point On The Ground

∴ In ABAC,

tan 30°= \(\frac{A B}{A C}\)

⇒ \(\frac{1}{\sqrt{3}}=\frac{A B}{A C}\)

AB = \(\frac{30}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m}\)

∴ Height of the tower = \(10 \sqrt{3} \mathrm{~m}\)

7. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20m high building and 60° respectively. Find the height of the tower.

Solution:

Let, CD be the height of the transmission tower.

Here, the height of the building

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry The Height Of The Transmission Tower

BC = 20m

In ΔABC,

tan 45° = \(\frac{B C}{A B}\)

1 = \(\frac{20}{A B}\)

AB = 20m

In ΔABD,

tan 60° = \(\frac{B D}{A B} \Rightarrow \sqrt{3}=\frac{B D}{20}\)

⇒ \(B D=20 \sqrt{3} \mathrm{~m}\)

⇒ \(B C+C D=20 \sqrt{3}\)

⇒ \(20+C D=20 \sqrt{3}\)

⇒ \(C D=20(\sqrt{3}-1) m\)

∴ Height of transmission tower = \(20(\sqrt{3}-1) m\)

8. The Shadow of a tower Standing on a level plane is found to be much longer when the Sun’s elevation is 30° than when it is 60°. Find the height of the tower.

Solution:

Let AB be a tower of height ‘h’ meters and BD and BC be its shadows when the angles of elevation of the sun are 30° and 60° respectively.

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry The Shadow Of A Tower Standing On A Level Plane And Find The Height Of THe Tower

∴ ∠ADB =30°, ∠ACB = 60° and CD = 50m

Let BC = X meters.

In ΔABC

tan 60° = \(\frac{A B}{B C} \Rightarrow \sqrt{3}=\frac{h}{x}\)

⇒ \(x=\frac{h}{\sqrt{3}}\)

In ΔABD

tan 30° = \(\frac{A B}{B D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+50}\)

⇒ \(\sqrt{3} h=x+50 \Rightarrow \sqrt{3} h=\frac{h}{\sqrt{3}}+50\)

2h= \(50 \sqrt{3}\)

h = \(25 \sqrt{3}\)

∴ Height of the tower = \(25 \sqrt{3}\)m

9. The angle of elevation of the top of a tower from a point on the ground is 30: After walking nom towards the tower, the angle of elevation becomes 60° Find the height of the tower.

Solution:

Let AB be a tower of height ‘h’ meters. From points D and c on the ground, the angle of elevation of top A of the tower is 30° and 60° respectively.

Given that CD = 40m

let BC = x meters

CBSE School For Class 10 Maths Chapter 9 Some Application Of Trigonometry The Angle Of Elevation Tower From Point On Ground 30 Degrees After The Angle Of Elevation Becomes 60 Degrees

In ΔABC

tan 60° = \(\frac{A B}{B C} \Rightarrow \sqrt{3}=\frac{h}{x}\)

⇒ \(x=\frac{h}{\sqrt{3}}\)

In ΔABD

tan 30° =\(\frac{A B}{B D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{40+x}\)

⇒ \(\sqrt{3} h=40+x\)

⇒ \(\sqrt{3} h=40+\frac{h}{\sqrt{3}}\) [from (1)]

⇒ \(3 h=40 \sqrt{3}+h\)

⇒ \(2 h=40 \sqrt{3}\)

⇒ \(h=20 \sqrt{3}\)

∴ Height of the tower = \(20 \sqrt{3} \mathrm{~m}\) m

CBSE Solutions For Class 10 Mathematics Chapter 2 Polynomials

CBSE Solutions For Class 10 Mathematics Chapter 2

Question 1. x2+9x+20

Solution:

Let P(x) = = x2+9x+20

= x2+5x+4x+20

= x(x+5)+4(x+5)

(x+4)(x+5)

P(x)=0

(x+4)(x+5)=0

x+4=0 or x+5=0

x=-4 x=-5

Zeros of P(x) are -4 and -5 \(=\frac{-9}{1}=\frac{- \text { Coefficient of } x}{\text { coefficient of } x^2}\)

Now, Sum of Zeros = -4+(-5) \(\frac{20}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^2}\)

Question 2. x2 – 9

Solution:

Let P(x) = x2 = 9 = x2=-32 = (x-3)(x+3)

P(x)=0

(x-3)(x+3)=0

x-3=0 Or x+3=0

x=3 x=-3

Zeros of p(x) are 3 and -3

Now, Sum of Zeros = 3+(-3)=0 = \(\frac{-0}{1}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^2}\)

and Product of Zeros = (3)(-3) = −9 = \(\frac{-9}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^2}\)

Read and Learn More Class 10 Maths

Question 3. Find the quadratic polynomials, the Sum of whose Zeroes is 17 and the product is 60. Hence, find the Zeroes of the polynomial.

Solution:

Let and B be the Zeroes of the polynomial P(X).

Given that X+B=17 and αβ=60

Now, P(x) = x2= (α+β)γ + αβ

= x2= 17x+60

= x2=12x-5x+60

= x(x-12)-5(x-12)

= (x-5)(x-12)

There may be So many different polynomials that satisfy the given Condition. The general equation quadratic polynomial will be k(x2=-17x+60), where k = 0

P(x)=0

(x-5) (x-12) = 0

(x-5)=0 or (x-2)=0

2=5 Or x=12

Zeros are 12 and 5.

Question 4. Find a quadratic polynomial, the Sum of whose Zeros is 7 and the product is -60. Hence, verify the relation between Zeros and Coefficients of the polynomial.

Solution:

Let and B be the Zeros of the polynomial P(x).

Given that α+β=ϒ and αβ = -60

Now, P(x) = x2 – (α+β) γ+ αβ

= x2-7x-60

= x2-12x+5x-60

= x(x-2)+5(x-12)

= (x-12)+(x-5)

There may be so many different polynomials which satisfy the given Condition. The general quadratic polynomial will be k (x2-7x-60), where k = 0.

P(x)=0

(x-12) (x+5)=0

(x-12)=0

x=12 or (x+5)=0

x=-5

Zeros are 12 and -5.

Question 5. If the product of Zeroes of the polynomial 30+ 5x+k is 6, find the value of k.

Solution:

Given polynomial = 31751+k

Product of Zeroes = \(\frac{\text { Constant term }}{\text { Coefficient of } x^2}\)

6= \(\frac{k}{3}\)

= 6×3=k

⇒ k = 18

CBSE Solutions For Class 10 Mathematics Chapter 2 Polynomials

Question 6. If the Sum of Zeroes of the polynomial x2+2x-12 is 1, find the value of k.

Solution:

Given polynomial = x2+2kx-12

Sum of Zeroes = \(-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^2}\)

1 = \(\frac{-2 k}{1}\)

1 = -2K

⇒ \(k=\frac{-1}{2}\)

Question 7. If x = \(\frac{5}{3}\) and x = \(\frac{-1}{2}\) are the Zeroes of the polynomial ax=7x+b, then find the values of a and b.

Solution: Let P(x) = ax27x+b

⇒ \(x=\frac{5}{3} \text { and } x=\frac{-1}{2}\) are zeroes of p(x)

⇒ \(P\left(\frac{5}{3}\right)=0\)

⇒ \(a\left(\frac{5}{3}\right)^2-7\left(\frac{5}{3}\right)+b\)

⇒ \(\frac{25 a}{9}-\frac{35}{3}+b\)

⇒ \(b=\frac{-25 a}{9}+\frac{35}{3}\)

⇒ \(P\left(\frac{-1}{2}\right)=a\left(\frac{-1}{2}\right)^2-7\left(\frac{-1}{2}\right)+b\)

⇒ \(\frac{a}{4}+\frac{7}{2}+b\)

⇒ \(\frac{a}{4}+\frac{7}{2}-\frac{25 a}{9}+\frac{35}{3}=0\)

⇒ \(\frac{a}{4}-\frac{25 a}{9}=-\frac{7}{2}-\frac{35}{3}\)

⇒ \(\frac{9 a-100 a}{36}=\frac{-21-70}{6}\)

⇒ \(-\frac{91 a}{36}=\frac{-91}{6}\)

⇒ \(\frac{91 a}{6}=91\)

91a = 546

⇒ \(a=\frac{546}{91}\)

a = 6

⇒ \(b=\frac{-25(6)}{9}+\frac{35}{3}\)

⇒ \(b=\frac{-25(6)}{9}+\frac{35}{3}\)

⇒ \(b=\frac{-150+105}{9}\)

⇒ \(b=\frac{-45}{9}\)

b = -5

Question 8. Verify that 1,-2, 4 are Zeros of the Cubic polynomial x3-3x2-6x+8. Also, Verify the relation between Zeroes and Coefficients of the polynomial.

Solution:

Here, P(x) = x3-3x2-6x+8

P(1) = (1)2 = 3(1)2 – 6(1) +8 = 1-3-6+ 8 = −9+9=0

P(-2) = (2) 3 -3(-2)=6(-2)+8=-8-12+12+8 = 0

P(4) = (4)3-3(4) -6(4) +8 = 64-48-24+8 = 0

1-2 and 4 are Zeroes of P(x).

Now, α+B+= 1-2+4=3 = \(\frac{-3}{1}=-\frac{\text { Coefficient of } x^2}{\text { Coefficient of } x^3}\)

XB+B++√α = (1)(-2)+(-2) (4)+(4)(1) = −2-8+4

= -10+4

⇒\(\frac{-6}{1}=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^3}\)

and LB7 = (1)(-2) (4) =\(-\frac{8}{1}=\frac{8}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^3}\)

Question 9. Verify that 2-4. and are zeroes of the Cubic polynomial 3x 3 +5x2 = 26x+8. Also, verify the relation between Zeroes and Coefficients of the polynomial.

Solution:

Here, P(x)=3x3 +5 x 2 – 26x+8

P(2) = 3(2)3 +5(2)2 = 26(2)+8=24+20-52+8 = 52-52 = 0

P(-4)=3(-4)3 + 5(-4)=26(-4)+8=-(92+80+104+8=-192+192=0

⇒ \(P\left(\frac{1}{3}\right)=3\left(\frac{1}{3}\right)^3+5\left(\frac{1}{3}\right)^2-26\left(\frac{1}{3}\right)+8=\frac{3}{27}+\frac{5}{9}-\frac{26}{3}+8=\frac{3+15-234+216}{27}\)

⇒ \(=\frac{234-234}{27}=0\)

2,-4. and — are Zeroes of P(x),

Now \(\text { , } \alpha+\beta+\gamma=2-4+\frac{1}{3}=-2+\frac{1}{3}=\frac{-6+1}{3}=-\frac{5}{3}=\frac{5}{3}=-\frac{\text { Coefficient of } x^2}{\text { Coefficient of } x^3}\)

⇒ \(\alpha \beta+\beta \gamma+\gamma \alpha=(2)(-4)+(-4)\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)(2)=-8-\frac{4}{3}+\frac{2}{3}=\frac{-28+2}{3}=\frac{-26}{3}\)

⇒ \(=\frac{- \text { Coefficient of } x^2}{\text { coefficient of } x^3}\)

and \(\alpha_\beta \beta=(2)(-4)\left(\frac{1}{3}\right)=-\frac{-8}{3}=\frac{8}{3}=\frac{\text { Constant term }}{\text { Coefficient of } x^3}\)

Question 10. Find a Cubic polynomial whose Zeroes are 5, 6, and -4.

Solution:

Let α= 5, β=6 and γ=-4

α+β+ γ = 5+6-4 =) ||- 4 = 7

αB+ βγ + γα = 5(6)+6(-4)+(-4) (5)

= 30-24-20

= 30-44

= -14

XB = 5(6)(u)

= -120

Cubic Polynomial = x3-(x+β++) x2 + (αβ+ βγ + γα) x-px

= x2 – (7) x2 + (-14)x-(-120)

= x3-7x2 = 14x+120

Question 11. Find a Cubic polynomial whose Zeroes are 11 and -1.

Solution:

let α= \(\frac{1}{2},\),B = 1 and 2 =-1

⇒ \(\alpha+\beta+\gamma=\frac{1}{2}+1-1=\frac{1}{2}\)

⇒ \(\alpha_\beta+\beta^1+\gamma \alpha=\frac{1}{2}(1)+(1)(-1)+(-1)\left(\frac{1}{2}\right) \Rightarrow \frac{1}{2}-1-\frac{1}{2} \Rightarrow-1\)

⇒ \(\alpha \beta \gamma=\frac{1}{2}(1)(-1) \Rightarrow \frac{-1}{2}\)

Cubic polynomial = x3= (α+β+γ) x2 + (αβ+ βγ + γα)x-αßγ

⇒ \(x^3-\frac{1}{2} x^2+(-1) x-\left(-\frac{1}{3}\right)\)

⇒ \(x^3-\frac{1}{2} x^2-x+\frac{1}{2}\)

⇒ \(2 x^3-x^2-2 x+1\)

Question 12. Find the quotient and remainder in each of the following and verify the division algorithm:

1. P(x) = x2=14x2+2x-1 is divided by g(x)=x+2

Solution:

Polynomial verify The Division Algorithm

Now, quotient = x2=6x+14, remainder = -29

dividend = x3-4x2+2x-1 and divisor = x+ 2

and quotient x divisor + remainder = (x2-6x+(4)(x+2)-29

= x2-6x2+14x+2x2=1271+28-29

= x2-4x2 +2x-1

= dividend

2. P(x) = x2 + 2x2= x + 1 is divided by g(x) = x2+1

Solution:

Polynomial Quotient Divisor

Now, quotient = x2+1, remainder = -x, dividend = x2 + 2x = x +1 and

divisor = x+1

and quotient divisor + remainder = (x2 + 1)(x2 + 1) – α = ) x + x2 + x2 + 1-x

x 4 + 2x = x + 1 =) dividend

Question 13. Actual division shows that x+2 is a factor of x3 + 4x2+3x-2.

Solution:

Polynomial Actual division

Question 14. If I am a zero of the polynomial x2-4x2=7x+10, find its other two Zeroes

Solution:

let P(x)=x3=_472-70+10

x= 1 is a zero of P(x)

(x-1) is a factor of P(x)

Polynomial Other Two Zeroes

P(x) = x3- 4x2-7x+ 10 =) (x-1) (x=3x-10)

(x-1) (x2+2x-5x-10)

(x-1) ((x(x+2)-5(x+2))

(x-1)(x+2)(x-5)

Now, P(x)=0

⇒ (x-1)(x+2)(x-5)=0

⇒ α-1=0 or x+2=0 or x-5=0

x=1 or x=-2 or x=5

Hence, other Zeroes are -2 and 5

Question 15. If Land -2 are two Zeroes of the polynomial x4+x3=11x=9x+18, find the other two Zeroes.

Solution:

Let P(x) = x2 + x2 – 1172=9x+18

x=1, x=-2 is a zero of p(x)

(x-1) (x+2) is a factor of P(x)

x2+2x-x-2 =) x2+x-2 is a factor of P(x)

Polynomial Zeroes of the polynomial

p(x0 = x4 = x3 – 11×2 – 9x + 18 = (x-1)(x+2)(x2-9)

= (x-1)(x+2)(x2-32)

= (x-1)(x+2)(x+3)(x-3)

Now P(x)

(x-1)(x+2)(x+3)(x-3)=0

= (x-1)(x+2)(x+3)(x-3)

⇒ x-1=0 x+2=0

⇒ x+3=0 X-3=0

⇒ x=1 x=-2 x=-3 X=3

Hence, other Zeroes are 3 and -3.

Question 16. Find all Zeroes of x + x3-23x=-3x+60, if it is given that two of its Zeroes are √3 and -√3.

Solution:

Let P(x) = x2+x3-28x=-3x+60

√3 and -√3 are Zeroes of P(x).

(x−√3)(x+√3) = x2= 3 is a factor of P(x).

Polynomial Zeroes

P(x) = x2+x3-x2=3x+60 = (x2=3)(x2+11-20)

= (x2-3) [x2+5x-4x-20]

=(x2-3)(x(x+5)-4(x+5))

= (x2-3)(x-4)(x+5)

The other Zeroes are given by

x-4=0 or x+5=0

⇒ x=4 Οr x=-5

Hence, other Zeroes are 4 and -5.

Question 17. Find Zeroes of the polynomial f(x) = x2 – 13x2 + 32x – 60, if it is given that the Product of its two Zeroes is 10.

Solution: Let α, B, be Zeroes of the given polynomial p(x), Such that &p=10-)(1)

⇒ \(\alpha+\beta+\gamma=\frac{-(-13)}{1}=13 \longrightarrow(2)\)

⇒ \(\alpha \beta+\beta 1+\alpha \gamma=\frac{32}{1}=32 \longrightarrow(3)\)

⇒ \(\alpha \beta \gamma=-\frac{(-60)}{1}=60 \longrightarrow(4)\)

From (1) and (4)

10s=60

⇒ \(\gamma=\frac{60}{10} \Rightarrow \gamma=6 \rightarrow(5)\)

Put 7=6 in (2), we get α+3 +6 = 13

α+B=7

Now, (α-B)2 = (x+3)=4xß

= (7)=4(10)

= 49-40

= 9

α-B = ± 3 —– (6)

Solving (5) and (6), we get

α=2,B=5 or α=2, B=5 and 1=6.

So, Zeroes are 2,5 and 6.

Question 18. What must be added to P(x) = 4x2 – 5x = 39x = 46x = -2, so that the resulting Polynomial is divisible by g(x) = 4x2 + 7x + 2 ?

Solution:

P(x) = 4×4 -5x3-39x2– 46x-2

9(x)= 4x2+7x+2

Polynomial Polynomial

CBSE Solutions For Class 10 Mathematics Chapter 5 Arithmetic Progression

Arithmetic Progression

Question 1. The nth term of a Sequence In defined as follows. Find the first four terms:

1. an=3n+1

Solution:

Given: an=3n+1

3n=3nt

Put n= 1,2,3,4, we get

a1 = 3×1+1=4

a2 = 3×2+1=7

a3 = 3×3 +1 = 10

a4=3×4+1= 13

The first four terms of the Sequence are 4,7, 10,13.

2. an= n2+3

Solution:

Given:

an=n2+3

Put n=1,2,3,4 we get

a1= (1)2+3 = 4

a2=(2)2 +3= 7

a3 = (3)2+3 = 12

Read and Learn More Class 10 Maths

a4=(4)2 +3= 19

The first four terms of the Sequence are 4, 7, 12, and 19.

3. an = n(n+1)

Solution:

an=n (n+1)

Put n= 1,2,3,4 we get

a1 = 1(1+1)=2

a2 = 2(2+1)=6

a3=3(3+1)= (2

a4 = 4(4+1)=20

The first four terms of the Sequence are 2,6,12,20

4.\(a_n=n+\frac{1}{n}\)

Solution:

Given:

⇒ \(a_n=n+\frac{1}{n}\)

Put n=1,2,3,4 we get

⇒ \(a_1=1+\frac{1}{1}=2 \)

⇒ \(a_2=2+\frac{1}{2}=\frac{4+1}{2}=\frac{5}{2} \)

⇒ \(a_3=3+\frac{1}{3}=\frac{9+1}{3}=\frac{10}{3} \)

⇒ \(a_4=4+\frac{1}{4}=\frac{16+1}{3}=\frac{17}{3}\)

First four terms of the Sequence are 2,\( \frac{5}{2}, \frac{10}{3}, \frac{17}{3}\)

5. an= 3n

Solution:

Given

an=3n

Put n=1,2,3,4 we get

a1=31=3

a2=32 = 9

a3=33=27

a4=34=81

The first four terms of the Sequence are 3, 9, 27, 81

Question 2. The nth term of a Sequence is (3n-7). Find its 20th term.

Solution:

3n-7

n=20

3(20)-7

60-7

57

The 20th term of a Sequence is 57

Question 3. Which of the following are A.p.’s? If they form an A.P., find the Common difference ‘d’ and write three more terms:

1. -10, -6, -2, 2,…….

Solution:

Here a=-10,

d=-6-10=4

-10, -6, -2, 2,4,6,10,14

Yes d= 4, next three items = 6, 10, 14

2. 3,3+ √2, 3+252, 3+3√2,…..

Solution:

Here a=3

d=3+√2-3 =) √2

3, 3+ √2, 3+2√2, 3+3√2, 3+4√2,3+5√2

Yes d=52, next three terms = 3+3√2, 3+4√2,3+5√2.

3. 0, -4, -8,-12,

Solution:

Here a=0

d=0-4=-4

0,-4,-8,-12-16,-20,-24

Yes do, next three terms = -16,-20,-24

Question 4. For the following A.-P. ‘S write the first terms and Common differences:

1. 2,5, 8, 11,..

Solution:

2, 5, 8, 11,

Her first term a=2

Common difference = 5-2 = 3

2.  -5,-1, 3, 7,

Solution: -5,-1, 3, 7

Her first term a=-5

Common difference = -541 = 4

CBSE Solutions For Class 10 Mathematics Chapter 5 Arithmetic Progression

Question 5. write the first four terms of the Ap., when the first term ‘a’ and the Common difference ‘d’ are given as follows:

1.  a=5, d=3

Solution:

a=5, d= 3

a1 =5

a2=5+3=8

a3=8+3=11

a4=11+3= 14

The first four terms are 5, 8, 11, 14

2.  a=-2,d=4

Solution:

a=-2, d=4

a1 =-2

a2=-2+4=2

a3=2+4=6

a4=6+4= 10

The first four terms are -2,2,6,10

Question 6. Find the 10th term of the AP: 1,3,5,7,..

Solution:

Here, a=1

d=3-1=2,

n = 10

an = a+ (n-1)

90= 1+ (10-1)2

⇒96=1+18

⇒ 210=19

10th term of the given Ap=19

Question 7. Find the 7th term of the AP 80, 77,74,71,

Solution:

Here a=80

d=77-80=-3,

n=7

a7 = a + (n-1)d

a7=80+(7-1)-3

a7=80-18

⇒ a7 = 62

7th term of the given A.p. =62

Question 8. Find the nth term of the A⋅p: -5, -3, -1, 1, —-

Solution:

Here a = -5

d=-3-5=2

n = n

an = a+ (n-1) d

an=-5+ (n-1)2

⇒ an=-5+2n-2

⇒ an= 2n-7

nth term of the given A.p. = (2n-7)

Question 9. Which term of the A-P. 4, 8, 12, is 76?

Solution:

Here, a = 4,

d=8-4=4

Let an=76

=) 4+ (n-1)4=76

= 4+4n-4=76

4n=76

⇒ \(n=\frac{76}{4} \Rightarrow n=19\)

19thterm of the given A.P. is 76

Question 10. which term of the Ap. 36, 33, 30, is Zero?

Solution:

Here a=36

d=33-36=-3

let an = 0

36+ (n-1)-3=0

36-3n+3=0

-3n=-39

\(n=\frac{39}{3} \Rightarrow n=13\)

The 13th term of the given A.P. is zero

Question 11. which term of the\(\frac{3}{4}, 1, \frac{5}{4}, \ldots \text {. is } 12 ?\)

Solution:

⇒ \(\text { Here } a=\frac{3}{4} \)

⇒ \(d=1-\frac{3}{4}=\frac{1}{4} \)

⇒ \(\text { let } a_n=12 \)

⇒ \(\frac{3}{4}+(n-1) \frac{1}{4}=12 \)

⇒ \(\frac{3+(n-1)}{4}=12\)

3+n-1=48

⇒ n+2=48

⇒n=46

46th term of the given AP is 12.

Question 12. Find the number of terms in the Ap. 8, 12, 16,

Solution:

Here a=8

d=12-8=) 4

let an=124

=) 8+ (n-1)4=124

=) 8+40-4=124

=) 4n=124-4

4n = 120

⇒ n = \(n=\frac{120}{4} \Rightarrow 30\)

30th term of the given A.P. is 124.

Question 13. Find the number of terms in the A.p. 75, 70, 65, 15

Solution:

Here a=75

d=70-75=-5

let an=15

75+ (n-1)-5=15

75-5n+5=15

70-5n=15

-517=15-70

-5n=-55 ⇒ n=11

11th term of the given A. p. is 15.

Question 14. Find the 10th term from the end of the A.P. 82, 79, 76, —-,4.

Solution:

Here aa 1=4

d=79-82=-3

n=10

(-(10-1)defined

– 4-(10-1)-3

=4727

=31

10th term from the end = 31

Question 15. Find the 16th term from the end of the A.P. 3,6,9,99

Solution:

Here, 1=99

d= 6-3 = 3,

n=16

⇒ 99-(16-1) 3

⇒ 99-45

⇒ 54

16th  term from the end = 54

Question 16. Find the Sum of the following A.p.: 3,8, 13, to 20 terms

Solution:

S1 =3+8+13,

a1=3

d=8-3=5

n=20

⇒ \(S_n=\frac{n}{2}[2 a+(n-1) d]] \)

⇒ \(S_{20}=\frac{20}{2}[2(3)+(20-1) 5]\)

⇒ \(S_{20}=10[6+95]\)

⇒ \(S_{20}=10[101]\)

⇒ \(S_{20}=1010 \)

Question 17. Find the sum of the following A.p. 5: 1,4,7,– to 50 terms

Solution:

S = 1+4+7+—–50

a=1

d=4-1= 3

n=50

⇒ \(S_n=\frac{n}{2}[2 a+(n-1) d] \)

⇒ \(S_{50}=\frac{50}{2}[2(1)+(50-1) 3] \)

⇒ \(S_{50}=25[2+147] \)

⇒ \(S_{50}=25[(49]\)

⇒ \(S_{50}=3,725\)

Question 18. Find the Sum given below: 3+6+9+ …..+96

Solution:

S=3+6+9+…… +96

a1 =3, d= 6-3 =) 3

an=96

a1+ (n-1) d=96

3+(n-1)3=96

3+3n-3=96

3n=96

⇒ \(n=\frac{96}{3} \Rightarrow n=32\)

S1 = Sum of 32 terms with first 3 terms and last term 96

⇒ \(S_1=\frac{32}{2}[3+96]\)

⇒ \(S_1=\frac{32}{2}[99]\)

⇒ \(S_1=16[99]\)

⇒ \(S_1=1584\)

Question 19. Find the Sum given below! 2 + 4+ 6+.

Solution:

S=2+4+6+—–+50

a1 =2,

d=4-2 =) 2 Q1=2,

an=50

a1+ (n-1)d=50

2+(n-1)2=50

2+2n=2=50

⇒ \(n=\frac{50}{2} \Rightarrow n=25\)

S1 = Sum of 25 terms with first 2 terms and last terms so

⇒ \(S_1=\frac{50}{2}[2+50] \)

⇒ \(S_1=\frac{50}{2}[526] \)

⇒ \(S_1=50[26] \)

⇒ \(S_1=650\)

Question 20. In an A.p.: given a=2, d= 3, Qn = 50, find n and Sn.

Solution:

Given a=2, d=3, an =50

a+(n-1)d=an

2+(n-1)3=50

2+3n-3=50

3n=5041

⇒ \(n=\frac{51}{3} \Rightarrow n=17 \)

⇒ \(S_n=\frac{n}{2}[2 a+(n-1) d] \)

⇒ \(5_n=\frac{17}{2}[2(2)+(17-1) 3] \)

⇒ \(S_n=\frac{17}{2}[2(2)+(17-1) 3] \)

⇒ \(S_n=\frac{17}{2}[4+48] \)

⇒ \(S_n=\frac{17}{2}\left[S_2\right] \)

⇒ \(S_n=17[26] \)

⇒ \(S_n=442\)

Question 21. Find the Value of x for which (x+2), 2x, (2x+3) are three consecutive terms of A.P.

Solution:

(x+2), 2x, (2x+3) are three consecutive terms of A.p.

\(2 x=\frac{(x+2)+(2 x+3)}{2}\)

4x= x+2+2x+3

4x=3x+5

4x-3x=5

x=5

CBSE Solutions For Class 10 Mathematics Chapter 4 Quadratic Equations

Quadratic Equations

Question 1. Which of the following are quadratic equations?

1.  X28x+12=0

Solution:

Given Solution is x2-8X+12=0

⇒  x2-6x-2x+12=0

⇒  x(x-6)-2(x-6) = 0

⇒ (x-2)(x-6)=0

⇒ x-2=0 or 2-6=0

⇒ x=2 Or x=6

Hence, x=2 and x=6 are the solutions.

2. 5x2-7x=3x2-7x+3

Solution:

Given Solution is 5x2-7x=3x2-7x+3

5x2-7x-3x2+7x-3=0

2x2-3=0

2x2=3

x2 = \(\frac{3}{2}\)

⇒ \(x=\sqrt{\frac{3}{2}}\)

Hence , \(x=\sqrt{\frac{3}{2}}\) are the solutions.

Read and Learn More Class 10 Maths

3. \(\frac{1}{4} x^2+\frac{7}{6} x-2=0\)

Solution:

Given equation is \(\frac{1}{4} x^2+\frac{7}{6} x-2=0\)

⇒ \(\frac{3 x^2+14 x-24}{12}=0\)

3x2+ 14x-24= 0 (1)

Equation in the form od ax2 + bx + c =0

a = 3, b = 14, c = -24

⇒ \(\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)

⇒ \(\frac{-14 \pm \sqrt{(14)^2-4(3)(-24)}}{2(3)}\)

⇒ \(\frac{-14 \pm \sqrt{196+288}}{6}\)

⇒ \(\frac{-14 \pm \sqrt{484}}{6}\)

⇒ \(\frac{-14 \pm 22}{6}\)

⇒ \(\frac{-14+22}{6} \text { or } \frac{-14-22}{6}\)

⇒ \(\frac{8}{6} \text { or } \frac{-36}{6}\)

⇒ \(\frac{4}{3} \text { or }-6\)

Hence \(x=\frac{4}{3} \text { and } x=-6\) are the solutions.

Question 2. Which of the following are roots of 4x2-9x-100=0?

  1. -4
  2. \(\frac{3}{4}\)
  3. \(\frac{25}{4}\)

Solution:

The given equation is 4x2-9x-100=0

On substituting x=-4 in the given equation

L.H.S= 4(-4)2-9(-4) – 100 = 0

64+34-100= 0 ⇒ = 0 = R.H.S

∴ x=-4 is a Solution of 4×2-9x-100.

On Substituting x=2/14 in the given equation

L.H.S= \(4\left(\frac{3}{4}\right)^2-9\left(\frac{3}{4}\right)-100=0\)

⇒ \(4\left(\frac{9}{16}\right)-\frac{27}{4}-100=0\)

⇒ \(\frac{36-108-1000}{16}=0\)

= 36-208=0

= 178 not equal to R.H.S

⇒ \(x=\frac{3}{4}\) is not a solutions of 4×2 9x – 100=0

On substituting \(x=\frac{25}{4}\)

⇒ \(\text { L.H.S }=4\left(\frac{25}{4}\right)^2-9\left(\frac{25}{4}\right)-100=0\)

⇒ \(4\left(\frac{625}{16}\right)-\frac{225}{4}-100=0\)

⇒ \(\frac{2500-900-1600}{16}=0\)

2500-2500=0 = R.H.S

⇒ \(x=\frac{25}{4}\) is a solution of 4×2 is a solution.

CBSE Solutions For Class 10 Mathematics Chapter 4 Quadratic Equations

Question 3. If one root of the quadratic equation 6x2-x-k=0 is 2, find the k value.

Solution:

Since, \(x=\frac{2}{3}\) is a solution of 6x2-x-k=0

⇒ \(6\left(\frac{2}{3}\right)^2-\frac{2}{3}-k=0\)

⇒ \(6\left(\frac{4}{9}\right)-\frac{2}{3}-k=0\)

⇒ \(\frac{24-6-9 k}{9}=0\)

18-9k = 0

18= 9k

⇒ \(k=\frac{18}{9}\)

k=2

Hence k=2 of the solution.

Question 4. 3x2-243=0

Solution:

Given equation is 3x2-243=0

3x2=243

⇒ \(x^2=\frac{243}{3}\)

x⇒ = 81

⇒ \(x=\sqrt{81}\)

⇒ \(x= \pm 9\)

x = 9 or x = -9

Hence x = 9 and x = -9 are the solutions.

Question 5. 5x2+4x=0

Solution:

Given equation is 5x2+4x=0

x(5x+4)= 0

x = 0 or 5x+4 – 0

5X=-4

x= \(\frac{-4}{5}\)

Hence x=0 and x = \(\frac{-4}{5}\) are the Solutions.

Question 6. x2 +12x+35=0

Solution:

The given equation is x2 +12x+35=0

x2 +5x+7x+35=0

x(x+5)+7(x+5)=

(1+7)(x+5)=0

x+7=0 or x+5=0

x=-7 or x=-5

Hence 2=-7 and x=-5 are the solutions.

Question 7. 2x2=5x+3=0

Solution:

Given equation is 2x2-5x+3=0

2x2 =5x+3=0

2x2 =3x-2x+3=0

x(2x-3)-1(2x-3)=0

(x-1)(2x-3)=0

x-1=0 or 2x-3=0

x=1 or 2x-3=0

2x=3

⇒ x = \(=\frac{3}{2}\)

Hence x=1 and x = \(=\frac{3}{2}\) are the Solutions.

Question 8. 6x2-x-2=0

Solution:

Given equation is 6x2-x-2=0

⇒ 6x2-4x+3x-2=0

⇒ 2x(3x-2)+1(3x-2)=0

⇒ (x+1)(3x-2)=0

⇒ 2x+1=0 Or 3x-2=0

⇒ 2x=-1 or 3x=2

⇒ \(x=-\frac{1}{2}\) Or \(x=\frac{2}{3}\)

Hence \(x=-\frac{1}{2}\) and \(x=\frac{2}{3}\) are the Solutions.

Question 9. 8x2-2x-21=0

Solution:

Given equation are 8x2-2x-21=0

8x2+6x-28x-21=0

2x(4x+3)-7(4x+3)=0

(2x-7)(4x+3)= 0

2x-7=0 4x+3=0

2x=7 Οr 4x=-3

⇒ \(x=\frac{7}{2}\) or \(x=\frac{-3}{4}\)

Hence \(x=\frac{7}{2}\) and \(x=\frac{-3}{4}\)

Question 10. 6x+40=31x

Solution:

Given equation are 6×2-31x+40=0

⇒ 62x= 18x-16x+40=0

⇒ 3x(2x-5)-8(2x-5)=6

⇒ (3x-8)(2x-5)=6

⇒ 3x-8=0 or 2x-5=0

⇒ 3x=8 Οr 2x = 5

⇒ \(x=\frac{8}{3}\) Or \(x=\frac{5}{2}\)

Hence \(x=\frac{8}{3}\) and \(x=\frac{5}{2}\) are the Solutions:

Question 11. \(\sqrt{3} x^2-11 x+8 \sqrt{3} x=0\)

Solution:

Given Equation is √3x2=11x+8√3=0

Equation in the form ax+ bx+c

a=√3, b=-11, C=8√3

⇒ \(\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)

⇒ \(\frac{11 \pm \sqrt{(-11)^2-4(\sqrt{3})(8 \sqrt{3})}}{2 \sqrt{3}}\)

⇒ \(\frac{11 \pm \sqrt{121-96}}{2 \sqrt{3}}\)

⇒ \(\frac{11 \pm \sqrt{25}}{2 \sqrt{3}}\)

⇒ \(\frac{11 \pm 5}{2 \sqrt{3}}\)

⇒ \(\frac{11+5}{2 \sqrt{3}} \text { or } \frac{11-5}{2 \sqrt{3}}\)

⇒ \(\frac{16}{2 \sqrt{3}} \text { or } \frac{6}{2 \sqrt{3}}\)

⇒ \(\frac{8}{\sqrt{3}} \text { or } \frac{3}{\sqrt{3}}\)

⇒ \(\frac{8 \times 3}{\sqrt{3}} \text { or } \sqrt{3}\)

⇒ \(8 \sqrt{3}\)

x=8√3 and x =√3

Hence x=8√3 and x =√3 are the solutions.

Question 12.3x2 – 256x+2=0

Solution:

Given equation is 3x2-2√6x+2=0

Equation in the form of an 7 bx + c = 0

a = 3, 6=-256, C= 2

⇒ \(\Rightarrow \frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)

⇒ \(\frac{2 \sqrt{6} \pm \sqrt{(-2 \sqrt{6})^2-4(3)(2)}}{2(3)}\)

⇒ \(\frac{2 \sqrt{6} \pm \sqrt{26-26}}{6}\)

⇒ \(\frac{2 \sqrt{6}}{6}\)

⇒ \(\frac{2}{\sqrt{6}}\)

⇒ \(\frac{2}{\sqrt{2 \times 3}}\)

⇒ \(\frac{\sqrt{2}}{\sqrt{3}} \Rightarrow \sqrt{\frac{2}{3}}\)

Hence \(x=\sqrt{\frac{2}{3}}\) are the solution.

Question 13. x2 + 5= \(\frac{9}{2} x\)

Solution:

Given equation is x2 + 5 – \(\frac{9}{2} x\)

2x2 +10-9x=0

⇒ 2x2=9x+10=0

⇒ 2x2=4x-5x+10=0

⇒ 2x(x-2)-5(x-2)=0

⇒ (2x-5)(x-2)=0

⇒ 2x-5=0 or x-2=0

⇒ 2x=5 or x=2

⇒ \(x=\frac{5}{2}\)

Hence \(x=\frac{5}{2}\) and x= 2 are the solution

Question 14. \(x=\frac{3 x+x}{}\)

Solution:

Given equation is x= \(x=\frac{3 x+x}{}\)

4x2-3x+1

4x2-37-1=0

4x2=4x-x-1=0

4x(x-1)+(x-1)=6

(4x+1)(x-1)=0

4×71=0 or x-1=0

4x=-1 or x=1

⇒  \(x=\frac{-1}{4}\)

Hence \(x=\frac{-1}{4}\) and x=1 are the solution.

Question 15. \(5 x-\frac{35}{x}=18, x \neq 0\)

Solution:

Given equation is \(5 x-\frac{35}{x}=18\)

5×2-18x-35=0

⇒ 5×2+7x-25x-35=0

⇒ x(5x+7)-5(5x+7)= 0

⇒ x-5=0 or 5x+7=0

⇒ x = 5 or 5x=-7

⇒ \(x=\frac{-7}{5}\)

Hence x = 5 and \(x=\frac{-7}{5}\) are the solution.

Question 16. \(\frac{2}{x^2}-\frac{5}{x}+2=0, x \neq 0\)

Solution:

Given equation is \(\frac{2}{x^2}-\frac{5}{x}+2=0\)

\(\frac{2-5 x+2 x^2}{x^2}=0\)

2x2-5x+2=0

2x2-4x-x+2=0

2x2-4x-x+2=0

2×(x-2)-(X-2) = 0

(2x-1)(x-2)=0

2x-1=0 or x=2=0

2x = 1 Or x = 2

⇒ \(x=\frac{1}{2}\)

Hence \(x=\frac{1}{2}\)or x=2 are the solution.

Question 17. a2x2+2ax+1= 0

Solution:

Given equation is a2x2+2ax+1= 0

a2x2+2ax+1= 0

a2x2+ax+ax+1= 0

ax(ax+1)+(ax+1)=0

(ax+1)(ax+1)=0

ax+1=0 or ax+1=0

ax=-1 Or ax = -1

⇒ \(x=\frac{-1}{a} \text { or } x=\frac{-1}{a}\)

Hence \(x=\frac{-1}{a} \text { or } x=\frac{-1}{a}\) are the solution.

Question 18. x2 – (p+q)x+pq=0

Solution:

Given equation is x2 – (p+q)x+pq=0

x2 – qx – Px +Pq=0

x(x-2)-P(x-2)=0

(X-P) (x-2)=0

X-P=O or x-2=0

X=P or x=2

Hence x=P and x=q are the solutions.

Question 19. 12abx2-(9a2-8b2)x-6ab=0

Solution:

Given Equation is 12 abx2 (9a2-8b2)x-6ab=0

12 abx = 9ax+8b-x=6ab=0

3ax (4bx-3a)+2b (4bx-3a)=0

(3ax+26) (46x-3a)=

3ax+2b=0 or 4bx-3a=0

3ax=-2b or 4bx=3a

Hence x = -2b and n=39 are the solutions.

⇒ \(x=\frac{-2 b}{3 a}\) Or \(x=\frac{3 a}{4 b}\)

Hence \(x=\frac{-2 b}{3 a}\) and \(x=\frac{3 a}{4 b}\) are the solution.

Question 20. 4x2-4ax+(a2-b2)=0

Solution:

Given Equation is 4x2 – 4ax + (a2 – b2) =0

4x2 – 4ax + (a2-b2)=0

4x2 = 49x + a2 = b2 = 0

⇒ \(\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)

⇒ \(\frac{4 a \pm \sqrt{(4 a)^2-4(4)\left(a^2-b^2\right)}}{2(4)}\)

⇒ \(\frac{4 a \pm \sqrt{16 a^2-16 a^2+16 b^2}}{8}\)

⇒ \(\frac{4 a \pm \sqrt{(4 b)^x}}{8}\)

⇒ \(\frac{4 a+4 b}{8}\)

⇒ \(\frac{4 a+4 b}{8} \text { or } \frac{4 a-4 b}{8}\)

⇒ \(\frac{4(a+b)}{8} \text { or } \frac{4(a-b)}{8}\)

⇒ \(\frac{a+b}{2} \text { or } \frac{a-b}{2}\)

Hence \(x=\frac{a+b}{2} \text { and } x=\frac{a-b}{2}\) are the solution.

Find the roots of the following quadratic equations by the method of  Completing the Square.

Question 21. Find the roots of the following quadratic equations by the method of  Completing the Square x2=10x-24=0

Solution:

Given equation is x2-10x-24=0

on Comparing with ax2+ bx+ c=0, we get

a=1, b=-10, c= -24

Discriminant, D= b2 – 4ac

⇒ D= (-10)2- 4(1)(-24)

⇒ D= 100+96

⇒ D = 196

Hence, the given equation has two real roots.

⇒ \(x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{+10 \pm \sqrt{196}}{2}\)

⇒ \(x=\frac{10 \pm 14}{2}\)

⇒ \(x=\frac{10+14}{2} \text { or } \frac{10-14}{2} \text {, }\)

⇒ \(x=\frac{24}{2} \text { or }-\frac{4}{2}\)

x= 12 Or – 2

x= 12,-2 are the roots of the equation.

Question 22. 2x2-7x-39=0

Solution:

The given equation is 2x2-7x-39=0

on Comparing that ax + bx + C=0, we get

= 2, 6=-7, C=-39

Discriminant D= b2-4ac

⇒ D= (-7)==4(2)(-39)

⇒ D= 49+312

⇒ D = 361

Hence, the given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{7 \pm \sqrt{361}}{2(2)}\)

⇒ \(x=\frac{7+19}{4} \text { or } \frac{7-19}{4}\)

⇒ \(x=\frac{13}{2} \text { or }-3\)

⇒ \(x=\frac{13}{2} \text { or }-3\) are roots of the equation.

Question 23. 5x2 + 6x – 8 = 0

Solution:

Given equation is 5×2+6x-8 = 0

on Comparing that ax2+ bx+c=0, we get

a=5, b=6, C=-8

Discriminant D= b2– 4ac

⇒ D= (6)2-4(5)(-8)

⇒ D = 36 + 160

⇒ D= 196

Hence, the given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{-6 \pm \sqrt{196}}{2(5)}\)

⇒ \(x=\frac{-6 \pm 14}{10}\)

⇒ \(x=\frac{-6+14}{10} \text { or } \frac{-6-14}{10}\)

⇒ \(x=\frac{4}{5} \text { or }-2\)

⇒ \(x=\frac{4}{5} \text { or }-2\) are the real roots.

Question 24. \(\sqrt{3} x^2+11 x+6 \sqrt{3}=0\)

Solution:

Given Equation is \(\sqrt{3} x^2+11 x+6 \sqrt{3}=0\)

a=√3, b=11, C=6√3

Discriminant D =  b2 – 4ac

⇒ D= (11)2 – 4(√3)(6√3)

⇒ D= 121-72

⇒ D = 49

Hence the given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{-11 \pm \sqrt{49}}{2 \sqrt{3}}\)

⇒ \(x=\frac{-11 \pm 7}{2 \sqrt{3}}\)

⇒ \(x=\frac{-11+7}{2 \sqrt{3}} \text { or } \frac{-11-7}{2 \sqrt{3}}\)

⇒ \(x=\frac{-4}{2 \sqrt{3}} \text { or } \frac{-18}{2 \sqrt{3}}\)

⇒ \(x=\frac{-2 \sqrt{3}}{3} \text { or }-3 \sqrt{3}\)
are the roots.

Question 25. 2x2 -9x+7=0

Solution:

Given equation is 2x2 = 9x + 7 = 0

2x2 – 9x + 7 = 0

on Comparing that Qx2+6x+=0, we get

a=2, b = -9, c=7

Discriminant D = b2 4aC

⇒ D = (-9)2 – 4(2)(7)

⇒ D = 81-56

⇒ D = 25

Hence the given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{9 \pm \sqrt{25}}{2(2)}\)

⇒ \(x=\frac{9 \pm 5}{4}\)

⇒ \(x=\frac{9+5}{4} \text { or } \frac{9-5}{4}\)

⇒ \(x=\frac{14}{4} \text { or } \frac{4}{4}\)

⇒ \(x=\frac{7}{2} \text { or } 2\)

⇒ \(x=\frac{7}{2} \text { or } 2\)are the real roots.

Question 26. 5x2-9x+17=0

Solution:

Given equation is 5x2-9x+17=0

on Comparing that ax2 + bx + c =0, we get

a=5, b=-19, C=17

Discriminant D=b2-4ac

⇒ 3D = (19)2 – 4(5)(17)

⇒ D= 361-340

⇒ D = 21

Hence the given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{19 \pm \sqrt{21}}{2(5)}\)

⇒ \(x=\frac{19+\sqrt{21}}{10} \text { or } \frac{19-\sqrt{21}}{10}\)

⇒ \(x=\frac{19+\sqrt{21}}{10} \text { or } \frac{19-\sqrt{21}}{10} \)are real roots.

Question 27. x2-18x+77=0

Solution:

Given equation is x2-18x+77=0

On Comparing that ax2+ bx + C=0, we get

a=1, b=-18, c=77

Discriminant D= b2 – 4ac

⇒ D = (-18)2 -4(1)(77)

⇒ D = 394 308

⇒ D = 3·16

Hence the given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{18 \pm \sqrt{16}}{2(1)}\)

⇒ \(x=\frac{18 \pm 4}{2}\)

⇒ \(x=\frac{18+4}{2} \text { or } \frac{18-4}{2}\)

⇒ \(x=\frac{22}{2} \text { or } \frac{14}{2}\)

x = 11or7

x= 11,7 are two real numbers.

Question 28. \(\frac{2}{3} x=-\frac{1}{6} x^2-\frac{1}{3}\)

Solution:

Given equation is \(\frac{2}{3} x=-\frac{1}{6} x^2-\frac{1}{3}\)=0

On comparing that at ax2+bx+C=0, we get

⇒ \(a=\frac{1}{6}, b=\frac{2}{3}, c=\frac{1}{3}\)

⇒ \(\text { Discriminant } D=b^2-4 a c\)

⇒ \(\Rightarrow D=\left(\frac{2}{3}\right)^2-4\left(\frac{1}{6}\right)\left(\frac{1}{3}\right)\)

⇒ \(D=\frac{4}{9}-\frac{4}{18}\)

⇒ \(D=\frac{8-4}{18}\)

⇒ \(D=\frac{4}{18} \Rightarrow D=\frac{2}{9}\)

Hence the given equation has two real roots.

⇒ \(x=\frac{-b \pm \sqrt{0}}{2 a}\)

⇒ \(x=\frac{-\frac{2}{3} \pm \sqrt{\frac{2}{9}}}{2\left(\frac{1}{6}\right)}\)

⇒ \(x=\frac{\frac{-2}{3} \pm \frac{\sqrt{2}}{3}}{\frac{2}{6}}\)

⇒ \(x=\frac{\frac{-2}{3} \pm \frac{\sqrt{2}}{3}}{1 / 3}\)

⇒ \(x=\frac{(-2 \pm \sqrt{2}) \times 3}{\not 2}\)

⇒ \(x=-2 \pm \sqrt{2}\)

⇒ \(x=-2+\sqrt{2} \text { or }-2-\sqrt{2}\)

⇒ \(x=-2+\sqrt{2},-2-\sqrt{2}\) are two real roots.

Question 29. \(\frac{1}{15} x^2+\frac{5}{3}=\frac{2}{3} x\)

Solution:

Given equation is \(\frac{1}{15} x^2-\frac{2}{3} x+\frac{5}{3}=0\)

⇒ \(a=\frac{1}{15}, b=\frac{-2}{3}, c=\frac{5}{3}\)

Discriminant \(D=b^2-4ac\)

⇒ \(D=\left(\frac{-2}{3}\right)^2-4\left(\frac{1}{15}\right)\left(\frac{5}{3}\right)\)

⇒ \(D=\frac{4}{9}-\frac{20}{45}\)

⇒ \(D=\frac{20-20}{45}\)

⇒ D = 0

Hence the given equation is two real roots.

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{\frac{2}{3} \pm 0}{2\left(\frac{1}{15}\right)}\)

⇒ \(x=\frac{x}{3} \times \frac{15^{5}}{x}\)

x = 5,5 are two real roots.

Question 30. \(\sqrt{6} x^2-4 x-2 \sqrt{6}=0\)

Solution:

Given equation is √6x=4x2-2√6=0

On Comparing that ax2 + bx +c=0, we get

Discriminant D= b2 – 4ac

⇒ D= (4)2 – 4(√c)(-2√2)

⇒ D = 16+48

⇒ D = 64

Hence Given equation has two real roots.

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{4 \pm \sqrt{64}}{2 \sqrt{6}}\)

⇒ \(x=\frac{4 \pm 8}{2 \sqrt{6}}\)

⇒ \(x=\frac{4+8}{2 \sqrt{6}} \text { or } \frac{4-8}{2 \sqrt{6}}\)

⇒ \(x=\frac{12}{2 \sqrt{6}} \text { or } \frac{-4}{2 \sqrt{6}}\)

⇒ \(x=\frac{\not 2 \times 6}{\not 2 \sqrt{6}} \text { or } \frac{-\not 2 \times 2}{\not 2 \sqrt{6}}\)

⇒ \(x=\sqrt{6} \text { or } \frac{-2}{\sqrt{6}}\)

⇒ \(\frac{-2}{\sqrt{2 \times 3}}\)

⇒ \(\frac{-6 \times 2}{2 \sqrt{6}}\)

⇒ \(\frac{-\sqrt{6}}{3}\)

⇒ \(x=\sqrt{6},-\frac{\sqrt{6}}{3}\) are two real roots.

Question 31. 256 x 2 – 32x + 1 = 0

Solution:

Given equation is 256 x2 = 32x+1=0

On Comparing that an’ + bx + c = 0, we get

a=256, b=-32, C=1

Discriminant D=6=4ac

⇒ D= (32) = 4(256)(1)

⇒ D= 1024-1024

⇒ D= 0

Hence given equation is two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{32 \pm \sqrt{6}}{2(256)}\)

⇒ \(x=\frac{32}{512}\)

⇒ \(x=\frac{1}{16}\)

⇒ \(x=\frac{1}{16}\) are two real roots.

Question 32. (2x+3)(3x-2)+2=0

Solution:

Given equation is (2x+3)(3x-2)+2=0

6x2-4x+9x-6+2=0

6x2+5x-4=0

On Comparing that ax2+bx+C=0, we get

a=6, b=5, C=-4

Discriminant D= b2 – 4ac

⇒ D=(C)2=4(6)(-4)

⇒ D= 25+96

⇒ D = 121

Hence given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{-5 \pm \sqrt{127}}{2(6)}\)

⇒ \(x=\frac{-5 \pm \sqrt{121}}{12}\)

⇒ \(x=\frac{-5+11}{12} \text { or } \frac{-5-11}{12}\)

⇒ \(x=\frac{6}{12} \text { or }-\frac{16}{12}\)

⇒ \(x=\frac{1}{2} \text { or }-\frac{4}{3}\)

⇒ \(x=\frac{1}{2} \text { or }-\frac{4}{3}\) are two real roots.

Question 33. x2-16=0

Solution:

Given equation is x2-16=0

x2-42=0

(x-4)2=0

x2+4-4x=0

On comparing that ax2+6x+C=0, we get

a=1, 6=-4, c=4

Discriminant D=b2-4ac

⇒ D=(-4)2-4(1)(4)

⇒ D = 16-16

⇒ D = 0

Hence the given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{4 \pm \sqrt{0}}{2}\)

⇒ \(x=\frac{4}{2}\)

x = 2

Question 34. 36x2 – 129x+(a2-b2)=0

Solution:

Given equation is 36x – 12ax + (a2 – b)=0

On comparing that ax2+bx+c=0, we get

a=36, b=-12a, C=(a2– b2)

Discrimanant =) D= b2-4ac

⇒ D = (12a)2-4(36)(a2-6-b2)

⇒ D = 144a2 – 144(a2-b2)

⇒ D = 144a2 – 144a2+144b2

⇒ D = 144b2

Hence the given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{12 a \pm \sqrt{144 b^2}}{2(36)}\)

⇒ \(x=\frac{12 a \pm\not \sqrt{(12 b)\not^2}}{72}\)

⇒ \(x=\frac{12 a \pm 12 b}{72}\)

⇒ \(x=\frac{12(a \pm b)}{72}\)

⇒ \(x=\frac{12(a+b)}{72} \text { or } \frac{12(a-b)}{72}\)

⇒ \(x=\frac{a+b}{6} \text { or } \frac{a-b}{6}\)

⇒ \(x=\frac{a+b}{6} \text { or } \frac{a-b}{6}\) are two real roots.

Question 35. P2 x2 + (p2– q2)x-q2=0

Solution:

Given equation is p2x2 + (p2 -q2)x-q2=0

On Comparing that ax2+ bx + c = 0, we get

a=p2, b= (p2 q2), c = -q2

Discriminant D= b2-4ac

⇒ D = (p2 q2)2 – 4(p2) (−22)

⇒ D= p2 q4 + 4p2 q2 – 2p2q2

⇒ D = p2 + 2 p2 q 2 + q 2 =) (P2+q2) 2

Hence the given equation has two real roots.

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{-\left(p^2-q^2\right) \pm \sqrt{p^2+q p^2 q^2+q^2}}{2 p^2}\)

⇒ \(x=\frac{-p^2+q^2 \pm \not\sqrt{\left(p^2+q^2\right)\not ^2}}{2 p^2}\)

⇒ \(x=\frac{-p^2+q^2 \pm\left(p^2+q^2\right)}{2 p^2}\)

⇒ \(x=\frac{\not -p^2+q^2+\not p^2+q^2}{2 p^2} \text { or }-\frac{-p^2+\not q^2-p^2-\not q^2}{2 p^2}\)

⇒ \(x=\frac{2 q^2}{2 p^2} \quad \text { or } \quad \frac{-2 p^2}{2 p^2}\)

⇒ \(x=\frac{q^2}{p^2} \quad \text { or }-1\)

⇒ \(x=\frac{q^2}{p^2} \quad \text { or }-1\) are two real roots.

Question 36. abx2 + (b2-ac)x – bc=0

solution:

The given equation is abx2+ (b2-ac)x-bc=0

on Comparing that ax2 + bx + c=0, we get

a= ab, b= (b2-ac), c=-bc

Discriminant =) D= b2 – 4ac

⇒ D= (b2-ac)2 +4(ab) (-bc)

⇒ D= b4 + a2c2 = 2b2ac+4ab2c

⇒ D= b4+ a2c2+2ab2c

⇒ 0= (b2+ac)2

Hence given equation has two real roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{-\left(b^2-a c\right) \pm \sqrt{\left(b^2+a c\right)^2}}{2 a b}\)

⇒ \(x=\frac{\not -b^2+a c+\not b^2+a c}{2 a b} \text { or } x=\frac{-b^2+\not a c-b^2-\not \ a c}{2 a b}\)

⇒ \(x=\frac{2 a c}{2 a b} \quad \text { or } x=\frac{-2 b^2}{2 a b}\)

⇒ \(x=\frac{c}{b} \quad \text { or } x=\frac{-b}{a}\)

⇒ \(x=\frac{c}{b} \quad \text { and} x=\frac{-b}{a}\) are two roots.

Question 37. 12abx2 – (9a2-8b2) x-6ab=0

Solution:

Given equation is 12abx – (9a2-8b2)x-6ab=0

on comparing that ax2+ bx + c = 0, we get

a=12ab, b=-(9a2 =8b2), c=-6ab

Discriminant ⇒ D= b2-4ac

⇒ D= (-(9a2 = 8b2)2 – 4(12ab) (-6ab)

⇒ D=81a464b4-144a2b2+288a2b2

⇒ D= 81a4+64b4+ 144a2b2

⇒ D= (9a2 +8b2)2

Hence the given equation has two roots

⇒ \(x=\frac{-b \pm \sqrt{D}}{2 a}\)

⇒ \(x=\frac{\left(9 a^2-8 b^2\right) \pm \sqrt{\left(9 a^2+8 b^2\right)^2}}{24 a b}\)

⇒ \(x=\frac{9 a^2-8 b^2 \pm\left(9 a^2+8 b^2\right)}{24 a b}\)

⇒ \(x=\frac{9 a^2-8 b^2+9 a^2+8 b^2}{24 a b}\) Or \(x=\frac{9 a^2-8 b^2-9 a^2-8 b^2}{24 a b}\)

⇒ \(x=\frac{18 a^x}{24 a b} \quad \text { or } x=\frac{-16 b^x}{24 a b}\)

⇒ \(x=\frac{3 a}{4 b}\) or \(x=\frac{-2 b}{3 a}\)

⇒ \(x=\frac{3 a}{4 b},-\frac{2 b}{3 a}\) are two real roots.

Question 38. Determine the nature of the roots of the following quadratic equations: 2x2 + 5x – 4 = 0

Solution:

The given equation is 2x2+5x-4=0

9x2-6x+1=0

Comparing with ax + bx+c=0

a=2, 6:5, C=-4

Discriminant ⇒ D= b2– 4ac

⇒ D= (5)=4(2)(-4)

⇒ D=25+32

⇒ D= 47

⇒ D>0

Hence the equation has real and distinct roots.

Question 39. 9x2-6x+1=0

Solution:

The given equation is 9x2-6x+1=0

Comparing with ax2 + bx +C=0

a=9, 6=-6, C=1

Discriminant ⇒ D= b2-4ac

⇒ D= (-6)2-(9)(1)

⇒ D= 36-36

⇒ D= 0

Hence the given equation has real and equal roots.

Question 40. Find the Value of k for which the equation 12×2+4kx+3=0 has real and equal roots.

Solution:

Given equation is 12x2 + 4kx+3=0

Comparing with ax2+ bx+c=0,

a=12, b=4k, c=3

For real and equal roots,

Discriminant (D)=0 ⇒ D= b2-4ac=0

⇒(4K)2=-4(12)(3)=0

⇒ 16K2-144=0

⇒ 16k2=144

⇒ k2=\(\frac{144}{16}\)

⇒ K2 = 9

⇒ k = √9

⇒ k= ±3

Question 41. Find the value of k for which the equation 2x2+5x-k=0 has real roots.

Solution:

Given equation is 2x2+5x-k=0

Comparing with ax2+bx+C=0

a=2, b=5, C=-k

For real roots, Discriminant (D) =20

(5)2+4(2)(18)20

⇒ \(k\frac{-25}{8}b^2-4 a c \geq 0\)

Question 42. The sum of a number and its reciprocal is \(\frac{10}{3}\), find the number (5).

Solution:

let the number be

According to the given Statement \(x+\frac{1}{x}=\frac{10}{3}\)

⇒ 3x2+3=10x

⇒ 3x2 – 10x+3=0

⇒ 3x2-9x+x+3=0

⇒ 3x(x-3)-(x-3)=0

⇒ (3x-1)(x-3) = 0

when 3x-1=0, x = = = =

and when x-3=0, x = 3

Hence the number of (5) are 3 and 1.

⇒ \(\frac{x^2+1}{x}=\frac{10}{3}\)

⇒ \(3 x-1=0, x=\frac{1}{3}\)

and when x-3=0 , x=3

⇒ latex]3 x^2+3=10 x/latex]

Hence the numbers of are \(\frac{1}{3}\)

CBSE Solutions For Class 10 Mathematics Chapter 3 Linear Equation In Two Variables

Linear Equation In Two Variables

Question 1. Solve for x and y:

7+y=17,

7-4=1

Solution: Given

x+y=17  → (1)

x-4=1    → (2)

From equation 1 we get y= 17-x → R

Substituting the value of from equation in 2, we get

x-(17-x)=1

2-17+2=1

2x=1+17

2x = 18

x = \(\frac{18}{2}\) ⇒ x=9

Read and Learn More Class 10 Maths

Substituting the value of x in an equation, we

y= 17-9

y= 8

Solution is x=9

y=8

2. x+2y=19

-x+2y=1

Solution: Given x+2y= 190 → (1)

-x+2y=1 → (2)

From equation 1 we get x=19-2y → 3

Substituting the value of and from equations (3)and (2) we get

-(19-2y) +2y= 1

– 19+2y+24=1

4y = 1+19

4y = 20

y = \(\frac{20}{4}\)

y = 5

Substitute value of y in equation 3 we get

x=19-25

X=19-2(5)

1=19-10

x=9

Solution is x =9

y=5

3. x – y= 0.9

\(\frac{11}{2(x+y)}=1\)

Solution: Given x – y= 0.9 → (1)

⇒ \(\frac{11}{2(x+y)}=1\)

⇒ \(\frac{11}{2 x+2 y}=1\)

2x + 2y = 11 → (2)

From equation we get x = 0-9 + y → (3)

Substituting the value of x from the equation, we get

2(0.9+4)+2y=11

1.8 +25+24=11

4y = 11-1-1

4y= 9, 2

y = \(\frac{9.2}{4} \Rightarrow y=2.3\)

Substituting the value of the y value in the (3) equation we get

2=0·9+2·3

X = 3.2

Solution is 2=3.2

y=2-3

4. 3x-2y=6

\(\frac{x}{3}-\frac{y}{6}=\frac{1}{2}\)

Solution: Given 3x-2y=6

⇒ \(\frac{x}{3}-\frac{y}{6}=\frac{1}{2}\)

⇒ \(\frac{6 x-y}{6}=\frac{1}{2}\)

2(6x-4)=6

12x-2y=6

From equation 1 we get 3x-2y=6

3x=6+24

⇒ \(x=\frac{2 y+6}{3} \rightarrow \text { (3) }\)

Substituting the value of x from equation 3 in 2, we get

⇒ \(12\left(\frac{2 y+6}{3}\right)-2 y=6\)

8y+824-2y=6

6y=6-24

6y=-18

⇒ \(y=\frac{-18}{6} \Rightarrow y=-3\)

Substituting the Value of y in Equation 3

⇒ \(x=\frac{2(-3)+6}{3}\)

⇒ \(x=\frac{-6+6}{3} \Rightarrow x=0\)

Solution is x=0

y=-3

5. 0.4x+0.34 = 1.7

07x-0-2y=0·8

Solution: Given 0.4x+0-3y=1-7 → (1)

0.72-0·24=0·8 → (2)

From equation (1) we get 0.4x=1.7-0.34

⇒ \(x=\frac{1.7-0.3 y}{0.4} \rightarrow \text { (3) }\)

Substituting the value of x from equation (3) in (2)we get

⇒ \(0.7\left(\frac{1.7-0.3 y}{0.4}\right)-0.2 y=0.8\)

⇒ \(\frac{1.19}{0.4}-\frac{0.21 y}{0.4}-0.2 y=0.8\)

2.975-0.525y-0-2y=0.8

-0-725y = 0. = 0 .525y-2.975

– 0.725y = 2175

⇒ \(0.7\left(\frac{1.7-0.3 y}{0.4}\right)-0.2 y=0.8\)

⇒ \(\frac{1.19}{0.4}-\frac{0.21 y}{0.4}-0.2 y=0.8\)

2.975y – 0.525y – 0.2y = 0.8

-0.725y  = 0.8 – 2.975

-0.725y  = -2.175

\(y=\frac{-2.175}{-0.725}\)

Substituting the value of ‘y’ from the equation

⇒ \(x=\frac{1.7-0.3(3)}{0.4}\)

⇒ \(x=\frac{1.7-0.9}{0.4}\)

⇒ \(x=\frac{0.8}{0.4}\)

x = 2

The solution is

y =3

x =2

6. y = 2x – 6

y= 0

Solution:

Given equations are

y = 2x-6 (1)

y= 0 (2)

Substituting y value in Equation (1)

0=2x-6

-2x = -6

⇒ \(x=\frac{6}{2} \Rightarrow x=3\)

Solution is x = 3

y = 0

7. 65x -33y = 97

33x-65y = 1

Solution: Given equations are 65x-33y=97 (1)

33x-65y = 10 (2)

on adding equation ( & we get

⇒ 98x-98y=98 x-y=1 → (3)

On Subtracting equation (2)from (1) we get

– 32x-32y=-96

– 32(x+y)=+96

(x + Y) = \(\frac{96}{32}\)

x + y = 3 → (4)

Adding equation (3) and (4)

putting x = 2 in equation (3)

2-y=1 =) -y= 1-2 =) -y=-1 =) y=1

Hence, the Solution is x=2

4 = 1

8. 217x+13ly=913

131x+217y=827

Solution: Given equations 217x+131y=9130 (1)

131x +2174=827 (2)

on adding (1) and (2) we get

348x+3484 = 1740

348(x+y)=1740

⇒ \(x+y=\frac{1740}{348}\) → (3)

On Subtracting the equation we get

-86x+86y=-86

-86(x-4)=-86

x-y=1 → (4)

Adding equation (3) and (4)

2x = 6

⇒ \(x=\frac{6}{2} \Rightarrow x=3\)

putting x = 3 in equation (3)

3 + y = 5

y = 5 – 3

y = 2

Hence the solution is x = 3

y = 2

CBSE Solutions For Class 10 Mathematics Chapter 3 Linear Equation In Two Variables

Question 2. Solve the following System of equations by using the cross-multiplication method:

1. 2x+y=5

3x+2y=8

Solution: The given equation can be written as

2x+y-5=0

3x+2y-8=0

By Gross multiplication method, we get

x y 1

1 -5 2 1

2 -8 3 1

⇒ \(\frac{x}{-8+10}=\frac{y}{-15+16}=\frac{1}{4-3}\)

⇒ \(\frac{x}{2}=\frac{y}{1}=\frac{1}{1}\)

⇒ \(\frac{x}{2}=\frac{1}{1} \text { or } x=2\)

and \(\frac{y}{1}=\frac{1}{1} \text { or } y=1\)

Hence, x=2 and y=1 is the required Solution.

2.  8x+13y-29=0

12x-74-17=0

Solution:

The given equations are

8x+13y-29=0

12x-7y-17=0

By Cross multiplication method, we get

x    y   1

13 -29 8 13

-7 -17 12 -7

⇒ \(\frac{x}{-221-203}=\frac{y}{-348+136}=\frac{1}{-56-156}\)

⇒ \(\frac{x}{-424}=\frac{y}{-212}=\frac{1}{-212}\)

⇒ \(\frac{x}{-424}=\frac{1}{-212}\)

⇒ \(x=\frac{-424}{-212}\)

x = 2

and \(\frac{y}{-212}=\frac{1}{-212}\)

y = 1

Hence, x=2 and y=1 is the required Solution.

3. 2y+2x=0

4y+3x=5

Solution: The given equation Can be written as 2x +3y=0 3x+4y-5

By Cross multiplication method, we get

x    y    1

3   0    2    3

4  -5   3    4

⇒ \(\frac{x}{-15-0}=\frac{y}{0+10}=\frac{1}{8-9}\)

⇒ \(\frac{x}{-15}=\frac{y}{10}=\frac{1}{-1}\)

when \(\frac{x}{-15}=\frac{1}{-1} \Rightarrow x=15\)

and\(\frac{y}{10}=\frac{1}{-1} \Rightarrow y=-10\)

Hence, x=15 and y=-10 is the required solution.

4. \(\frac{x}{6}+\frac{4}{15}=4\)

\(\frac{x}{3}-\frac{4}{12}=\frac{19}{4}\)

Solution: The given equation can be written as

⇒ \(\frac{x}{6}+\frac{y}{15}-4=0\)

⇒ \(\frac{5 x+2 y-120}{30}=0\)

5 x+2 y-120 = 0  → (1)

⇒ \(\frac{x}{3}-\frac{y}{12}-\frac{19}{4}=0\)

⇒ \(\frac{8 x-2 y-114}{24}=0\)

8x – 2y – 114 = 0→ (2)

By Cross multiplication method & we get

x         y            1

2    – 120     5       2

-2  -114      8        2

⇒ \(\frac{x}{-225-240}=\frac{y}{-960+570}=\frac{1}{-10-16}\)

⇒ \(\frac{x}{-468}=-\frac{y}{-390}=\frac{1}{-26}\)

when \(\frac{x}{-4 6 8}=\frac{1}{-26}\)

⇒ \(x=\frac{-468}{-26} \Rightarrow x=18\)

⇒ \(\text { and } \frac{y y}{-390}=\frac{1}{-26} \Rightarrow y=\frac{-390}{- 20} \Rightarrow y=15\)

Hence X-18 and y = 15 is the required solution.

5. x+y=a+b

ax-by=a2=62

Solution: The given equations Can be written as

x+y=(a-6)=0

ax-by-(a2+63)=0

By Cross multiplication method, we get

x            y               1

1      -(a-b)        1       1

-b     -(a2+b2)   a    -b

⇒ \(\frac{x}{-\left(a^2+b^2\right)-b(a-b)}=\frac{y}{-a(a-b)+\left(a^2+b^2\right)}=\frac{1}{-b-a}\)

⇒ \(\frac{x}{-a^2-b^2-a b+b^2}=\frac{y}{-a^2+a b+a^2+b^2}=\frac{1}{-b-a}\)

⇒ \(\frac{x}{-a^2-a b}=\frac{y}{a b+b^2}=\frac{1}{-b-a}\)

when \(\frac{x}{-a^2-a b}=\frac{1}{-b-a}\)

⇒ \(x=\frac{-b(a+b)}{-(a+b)}\)

x = a

and \(\frac{y}{a b+b^2}= \frac{1}{-b-a}\)

⇒ \(\frac{y}{-b(-a-b)}=\frac{1}{-b-a}\)

⇒ \(y=\frac{-b(-b-a)}{+b-a}\)

Hence x=a and y = b are the required Solution

6. ax-by=a2+b2

x+y=20

Solution: The given equations Can be written as,

ax-by-(a2=+b2)=0

x+y-2a=0

By Cross multiplication method, we get

x                y             1

-b         -(a2+b2)      a      -b

1               -2a           1        1

⇒ \(\frac{x}{2 a b+\left(a^2+b^2\right)}=\frac{y}{-\left(a^2+b^2\right)+2 a^2}=\frac{1}{a+b}\)

⇒ \(\frac{x}{2 a b+\left(a^2+b^2\right)}=\frac{y}{-\left(a^2+b^2\right)+2 a^2}=\frac{1}{a+b}\)

⇒ \(\frac{x}{(a+b)^2}=\frac{y}{a^2-b^2}=\frac{1}{a+b}\)

⇒ \(\frac{x}{(a+b)^2}=\frac{1}{a+b}\)

⇒ \(x=\frac{(a+b)^2}{(a+b)}\)

x = a+b

and \(\frac{y^2}{a^2-b^2}=\frac{1}{a+b}\)

⇒ \(y=\frac{(a+b)(a-b)}{(a+b)}\)

y = a-b

Hence x= a+b an is the required solution.

7. ax+by = c

bx+ay=1+c

Solution: The given equations can be written as

ax+by = c

bx+ay= (C+1)=0

B Cross multiplication method, we get

x                  y                  1

b                -c                 a             b

a             -(c+1)            b               a

⇒ \(\Rightarrow \frac{x}{-b(c+1)+a c}=\frac{y}{-b c+a(c+1)}=\frac{1}{a^2-b^2}\)

⇒ \(\frac{x}{-b c-b+a c}=\frac{y}{-b c+a c+a}=\frac{1}{a^2-b^2}\)

⇒ \(x=\frac{ac-b-b c}{a^2-b^2}\)

and \(\frac{y}{-b c+a c+a}=\frac{1}{a^2-b^2}\)

⇒ \(y=\frac{-(b c-a-a c)}{-\left(-b^2-a^2\right)} \Rightarrow y=\frac{b c-a-a c}{b^2-a^2}\)

Hence x \(=\frac{a c-b-b c}{a^2-b^2} \text { and } y=\frac{b c-a-a c}{b^2-a^2}\).

8.  (a-b)x + (a+b)y = a2- 2ab-b2

(a+b) (x+y)= a2+b2

Solution:

The given equation can be written as

(a-b)x + (a+b)y – (a2+2a+b2) = 0

(a-b)x + (a+b)y – (a+b)2 = 0 (1)

(a+b)(x+y) = a2+b2

ax+ay+bx+by – (a2-b2) = 0

(a+b)x + (a+b)y – (a-b)2 = 0 (2)

By cross-multiplication methods (1)and(2)

x              y                 1

(a+b)      -(a+b)2      (a-b)     (a+b)

(a+b)      -(a2-b2)     (a+b)    (a+b)

⇒ \(\frac{x}{-(a+b)\left(a^2-b^2\right)+(a+b)^3}=\frac{y}{-(a+b)^3+\left(a^2-b^2\right)(a-b)}=\frac{1}{(a-b)(a+b)-(a+b)^2}\)

⇒ \(\frac{x}{-a^3+a b^2-a^2 b+b^3+a^3+b^3+3 a^2 b+3 a b^2}\)

⇒ \(=\frac{y}{-p^2-p^2-3 a^2 b-3 a b^2+a^3-a^2 b-a b^2+b^3}\)

⇒ \(=\frac{1}{a\not^2-b^2-\not a^2-b^2-2 a b}\)

⇒ \(\frac{x}{2 b^3+4 a b^2+2 a^2 b}=\frac{y}{-4 a^2 b-4 a b^2}=\frac{1}{-2 b^2-2 a b}\)

⇒ \(\frac{x}{2\left(b^3+2 a b^2+a^2 b\right)}=\frac{y}{-4\left(a^2 b-a b^2\right)}=\frac{1}{-2 b(b+a)}\)

when \(\frac{x}{2\left(b^3+2 a b^2+1 a^2 b\right)}=\frac{1}{-2 b(b+a)}\)

⇒ \(x=\frac{2\not\left(b^3+2 a b^2+a^2 b\right)}{-2 b(b+a)}\)

⇒ \(x=\frac{\not b\left(b^2+2 a b+a^2\right)}{\not b(b+a)}\)

⇒ \(x=\frac{(a+b)^2}{(a+b)}\)

x = a+b

and\(\frac{y}{-4\left(a^2 b-a b^2\right)}=\frac{1}{-2 b(b+a)}\)

⇒ \(y=\frac{-4 b\left(d^2-a b\right)}{-2 b(b+a)}\)

⇒ \(y=\frac{2 a^2-2 a b}{a+b} \times \frac{1}{2 a^2}\)

⇒ \(y=\frac{-2 a b}{a+b}\)

Hence x=a+b and \(y=\frac{-2 a b}{a+b}\) is the required solution.

Question 3. Each of the following System of equations determines whether the System has a unique solution, no Solution, or infinitely many Solutions. In Case there is a unique solution, find it:

1. 2x-3y=17

4x+9=13

Solution: Given equations are

2x-3y=170 (1)

4x+y=13 (2)

Here a1 =2, b1 =-3, C1 = 17

a2 =4, b2 =1 and C2 =13

Now, \(\frac{a_1}{a_2}=\frac{2}{4}=\frac{1}{2} \text { and } \frac{b_1}{b_2}=\frac{-3}{1}\)

Since\(\frac{a_1}{a_2} \neq \frac{b_1}{b_2} .\) Hence, the given system has a unique solution.

By Cross multiplication method, we have

x              y          1

3      -17         2         -3

1      -13        4           1

⇒ \(\frac{x}{39+17}=\frac{y}{-68+26}=\frac{1}{2+12}\)

⇒ \(\frac{x}{56}=\frac{y}{-42}=\frac{1}{14}\)

When \(\frac{x}{56}=\frac{1}{14}\)

⇒ \(x=\frac{56}{14} \Rightarrow x=4\)

And \(\frac{y}{-42}=\frac{1}{14}\)

⇒ \(y=\frac{-42}{14} \Rightarrow y=-3\)

Hence x=4 and y=-3 is the required solution.

2. 5x+2y=16

3x+ \(\frac{6}{5}\) y = 2

Solution: Given equation are 5x+2y=16

3x+\(\frac{6}{5}\)

Here a1=5, b1=2, c1=16

a2=3, b2 = \(\frac{6}{5}\), c2=2

Now,

⇒ \(\frac{a_1}{a_2}=\frac{b_1}{b_2} \neq \frac{c_1}{c_2}\)

⇒ \(\frac{5}{3}=\frac{2}{6 / 5} \neq \frac{16}{2}\)

⇒ \(\frac{5}{3}=\frac{10}{6} \neq 8\)

⇒ \(\frac{5}{3}=\frac{5}{3} \neq 8\)

Since,\(\frac{a_1}{a_2}=\frac{b_1}{b_2} \neq \frac{c_1}{c_2} .\) hence the given system has no solution.

3. 3x+4=2

6x+2y=4

Solution: Given equations are 3x+y=2

6x+2y=4

Here a1 = 3, b1 = 1, c1=2

a2=6, b2=2, c2=4

Now,

⇒ \(\frac{a_1}{a_2}=\frac{3}{6} \text { and } \frac{b_1}{b_2}=\frac{1}{2} \text { and } \frac{c_1}{c_2}=\frac{2}{4}\)

Since \(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2} .\) Hence the given system has an infinite solution.

4. \(\frac{x}{3}+\frac{y}{2}=3\)

x-2y = 2

Solution: Given equations are \(\frac{x}{3}+\frac{y}{2}=3\)

x-2y = 2

Here a1 = \(\frac{1}{3}\), b1 = \(=\frac{1}{2}\)
, c1=2

a2=6, b2=2, c2=4

Now

⇒ \(\frac{a_1}{a_2}=\frac{1 / 3}{1}=\frac{1}{3} \text { and } \frac{b_1}{b_2}=\frac{1 / 2}{-2}=\frac{-1}{4}\)

Since \(\frac{a_1}{a_2} \neq \frac{b_1}{b_2} .\) Here the given system has unique solutions

By Cross multiplication method, we get

x           y             1

1/2        -3          1/3        1/2

-2          -2          1           -0

⇒ \(\frac{x}{-\left(\frac{1}{2}\right)(2)-6}=\frac{y}{-3+2\left(\frac{1}{3}\right)}=\frac{1}{-2\left(\frac{1}{3}\right)-1\left(\frac{1}{2}\right)}\)

⇒ \(\frac{x}{-1-6}=\frac{y}{-3+\frac{2}{3}}=\frac{1}{-\frac{2}{3}-\frac{1}{2}}\)

⇒ \(\frac{x}{-7}=\frac{y}{\frac{-9+2}{3}}=\frac{y}{\frac{-4-3}{6}}\)

⇒ \(\frac{x}{-7}=\frac{y}{-7 / 3}=\frac{1}{-7 / 6}\)

⇒ \(\frac{x}{-7}=\frac{-3 y}{7}=\frac{-6}{7}\)

⇒ \(\frac{x}{-7}=\frac{-3 y}{7}=\frac{-6}{7}\)

⇒ \(\text { when } \frac{x}{-7}=\frac{-6}{7}\)

⇒ \(x=\frac{-6(-7)}{7}\)

⇒ \(x=\frac{42}{7}\)

x = 6

and \(\frac{-3 y}{7}=\frac{-6}{7}\)

⇒ \(-3 y=\frac{-6(7)}{7}\)

7(-3)=-6(7)

-21y = -42y

⇒ \(y=\frac{42}{21}\)

y = 2

Hence x = 6 and y=2 is a required solution.

5. Kx+2y=5

3x+9=1

Solution: The given system of equations is

kx+2y=5

3x+y=1

Here, a1=k, b1 =2 and c1=5

a2=3, b2=1 and c2=1

The System has unique Solution \(\text { if } \frac{a_1}{a_2} \neq \frac{b_1}{b_2}\)

⇒ \(\frac{k}{3} \neq \frac{2}{1}\)

⇒ \(\Rightarrow \quad k \neq 6\)

So, k can take any real value except 6.

6. 4x+ky +1=0

2x+2y+2=0

Solution: The given System of equations is 4x+ky+8=0

2x+2y+2=0

Here a1 = 4, b1 = k and c1 =8

a2=2, b2 =2 and C2 =2

The System has unique solution if \(\text { if } \frac{a_1}{a_2} \neq \frac{b_1}{b_2}\)

⇒ \(\begin{aligned}
& \Rightarrow \frac{2 y}{x} \neq \frac{k}{2} \\
& \Rightarrow k \neq 4
\end{aligned}\)

So k can take any real value except 4.

7. 2x-37-5=0

kx-by-8=0

Solution: The given System of equations are 2x-34-5=0

kx-6x-8=0

Here, a1 =2, b1=3 and c1 =-5

a2=k, b2=6 and C2 =-8

The System has unique solution if \(\text { if } \frac{a_1}{a_2} \neq \frac{b_1}{b_2}\)

⇒ \(\frac{2}{k}+\frac{-3}{-6}\)

⇒ \(\frac{2}{k}+\frac{1}{2}\)

⇒ \(\begin{aligned}
& \frac{4}{k} \neq 1 \\
&\quad k \neq 4
\end{aligned}\)

So k can take any real value except 4.

8. 8x+5y=9

kx+10y=18

Solution: The given System of equations is 8x+5y=9

Here a1 =8, b1=5 and c1 =9

a2 =k, b2 = 10 and c2 = 18

kx+10y=18

The System has infinitely many solutions if \(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\)

⇒ \(\frac{8}{k}=\frac{5}{10}=\frac{9}{18}\)

⇒ \(\frac{8}{k}=\frac{1}{2}=\frac{1}{2}\)

when \(\frac{8}{k}=\frac{1}{2} \Rightarrow k=16\)

Hence, for k = 16, the given System equations will have infinitely many solutions.

Question 4. The Sum of the two numbers is 85. Suppose the langer number exceeds four times the Smaller one bys. Find the numbers.

Solution: let the two numbers x and y, and x>y.

According to question x+y=85 → (1)

and X-4y=5 → (2)

Subtracting equation (2) from (1), we get

5y=80 =) y=16

Putting y=16 in equation (, we get

x+16=85

2=85-16

– x = 69

CBSE Solutions For Class 10 Mathematics Chapter 1 Real Numbers

Real Numbers Exercise – 1.1

CBSE Solutions For Class 10 Mathematics Chapter 10 Circles

Question .1 Use Euclid division algorithm, to find the H.C.F of the following:

  1. 70 and 40
  2. 180 and 45
  3. 165 and 225
  4. 155 and 1385
  5. 105 and 135
  6. 272 and 1032

Solution:

1. 70 and 40

Read and Learn More Class 10 Maths

Here 40 > 70

7o = 4O * 1 + 30

4o = 30 * 1 + 10

3o = 10 * 1 + 0

Since remainder = 0

The recent divisor is the H.C.F

H.C.F (40,70)

2. 180 and 45

Hare 18 > 45

Real Numbers Euclid division algorithm

45 = 18 * 2 + 9

18 = 9 * 2 + 0

Since remainder = 0

The recent divisor is the H.C.F

H.C.F ( 18,45) = 9

3. 165 and 225

Here 165 > 225

Real Numbers Euclid division algorithm

225 = 165 * 1 + 90

165 = 90 * 1 + 75

90 = 75 * 1 + 15

75 = 15 * 5 + 0

Since remainder = 0

The recent divisor is the H.C.F

H.C.F ( 165,225) = 15

4. 155 and 1385

Hare 155 and 1385

Real Numbers Real Numbers Euclid division algorithm

1385 = 155 * 8 + 145

155 = 145 * 1 + 0

145 = 10 * 14 + 5

10 = 5 * 2 + 0

Since remainder = 0

The recent divisor is the H.C.F

H.C.F ( 155,1385) = 15

5. 105 and 135

Here 105 and 135

Real Numbers Euclid division algorithm

135 = 105 * 1 + 30

105 = 30 * 30 + 15

30 = 15 * 2 + 0

Since remainder = 0

The recent divisor is the H.C.F

H, C.F ( 105, 135)

6. 272 and 1032

Here 272 and 1032

Real Numbers Euclid division algorithm

1032 = 272 * 3 + 216

272 = 216 * 1 + 56

216 = 56 * 3 + 48

48 = 8 * 6 + 0

Since remainder = 0

The recent divisor is the H.C.

H, C.F ( 272, 1032)

Question: 2. The H.C.F of 408 and 1032 is expressible in the form of 1032×2-408xy, then find the Value of y.
Solution:

First, we will find the H-CF of 408 and 1032

Here 408 >1032

Real numbers The H.C.F Expressible

1032 = 408 x 2 + 216

408 = 216 x 1 + 192

216= 192 x 1 + 24

192=24 x 8 + 0

Since remainder = 0

The recent divisor is the H-C.F

H.C.F. of (408, 1032) = 24

Now, 1032×2-408xy = 24

= -408xy = 24-1032X 2

-y = \(\frac{24-2064}{408}\)

-y = \(\frac{-2040}{408}\)

y = 5

Question 3. If the H.C.F of 56 and 72 is expressible in the form of 56x+72×53, then find the Value of x.
Solution:

First, we will find the H.C.F of 56 and 72

Here 56 > 372

Real numbers The H.C.F Expressibles

72 = 56 x 146

56= 16 x 3 + 8

16 = 8 x 2 + 0

Since remainder = 0

The recent divisor is the H·C.F

H.C.F. of (56,72)=8

Now, 56x+72×53 = 8

56x = 8 – 72 x 53

56x= 8-3,816

x = \(\frac{-3,808}{56}\)

x = – 68

Question 4. Express the H.C.F of 18 and 24 in the form
solution:

Here 18>24

Real numbers Express the H.C.F

24 = 18× 1+6

18=6×2+6

6=6×1+0

Since remainder =0

The recent divisor is the H.C.F

H.C.F. (18,24)=6

Now,

6=18-6×2

6=18-(24-18X1)

= 18-24 +18 x |

18×2-24 = 18x +244

where x = 2, y=-1

Question 5. Express the H.CF of 30 and 36 in the form of 30x + 36y.

Solution:

Here 30> 36

Real numbers Express the H.C.F Of Number

30= 200 6×4+6

6= 6X1+0

Since remainder = 0

The recent divisor is the H.C.F

H.C.F. (30,36) = 6

Now, 6=30-6×4

6=30-(36-30×1)

= 30-36+30X1

= 30X2-36

= 30x+364

where, x=2 and y=-1

Question 6. Find the largest number that divides 189 and 249 9 in each case.

Solution: We have to find a number, which divides the other numbers

Means H.C.F.

It is then that the required Number, when divided between 189 and 249 leaves the remainder 9; 9 is extra in each number. It means that if these numbers are 6 less, then there is no remainder in each case.

89-9=180 and 249-9=240 are completely divisible by the required number.

Real Numbers The Largest Number That Divides

H.C.F. (180,240) = 60

Hence, the required number =  60.

Question 7. Find the largest number that divides 280 and 1248 u and 6 respectively. leaving the remainder solution.

Solution: We have to find a number, which divides the other numbers means → H.C.F.

It is given that the required number, when divided between 280 and 1248, leaves the remaining 4 and 6 respectively. It means that if 280 is 4 less than, 1248 is 6 less, then on division, gives no remainder.

280-4=276 and 1248-6=1242 are Completely divisible to the required number.

First, we will find the H.C.F of 276 and 1242

Real Numbers Completely Divisible

H.C.F. (2.76, 1242) = 138

Hence, the required number =138.

Question 8. Find the greatest number that divides 699, 572, and 442 leaving remainders 6, 5, and 1 respectively.

Solution: We have to find a number, which divides the other numbers means → H.C·F.

It is given that the required numbers when divided into 699, 572, and 442, leave the remaining 6,5 and I respectively. It means that if 699 is 6 less, 572 is s less, and 442 is I less, then on division, gives no remainder.

699-6=693, 572-5=567 and 442-1=441 are and 442-1=441 are completely by the required number .

First, we will find the H.C.F of 693 and 567.

Real Numbers Completely By The Required Number

693 = 567×1 +126

567 = 126×4 +63

126 = 63X2  + o

Now, we filled the H.C.F of 63 and 441.

Real Numbers Completely By The Required Numbers

441=63×7 +0

H.C.F. (63, 441) = 63

Required Number = 63

Question 9. A sweet Seller has 420 kaju burfis and 130 badam burfis. She wants to stack them in such a way that each stack has the same number, and they take up the least area of the tray what is the number of Sweets that Can be Placed In each stack for this purpose? Also, find the number of stacks.

Solution: Maximum number of burfis in each stack = H.C.F of 420 and 130

420 = 2X2 X3 X5 X 7

130 = 2X5X 13

H·CF = 2×5 = 10

Maximum number of burfis in each stack = 10

Also, number of stacks = \(=\frac{420}{10}+\frac{130}{10}=42+13=55 .\)

Question 10. Three sets of English, Hindi, and Mathematics books have to be stacked In such a way that all the books are stored topicwise and the height of each stack is the Same. The number of English books is 96, the number of Hindi books is 240 and the number of mathematics books is 336. Assuming that the books are of the Same thickness, determine the number of Stacks of English, Hindi, and Mathematics books and hence the total number of Stacks.

Solution: Maximum number of books in each stack H.C.F. of

96,240 and 336

96= 2x2x2x 2 x 2 x 3

240 = 2x2x2x2x3x5

336 = 2x2x2 × 2 × 3 × 7

H·C.F = 2x2x2x2x3

Maximum number of books in each stack = 48
Also, number of stacks = 96

Also number Stacks = \(\frac{96}{48}+\frac{240}{48}+\frac{336}{48}\)

Real Numbers Exercise 1. 2

Question 1. Express each of the following as a product of prime factors:

  1. 96
  2. 48
  3. 150
  4. 3072

Solution:

Real Numbers Product Of Prime Factors

96 = 2 * 2 * 2 * 2 * 2 * 3

96 = 25 * 3

Real Numbers Product Of Prime Factors

84 = 2 * 2 * 3 * 7

84 = 22 * 3 * 7

Real Numbers Product Of Prime Factors

150=2 x 3 x 5 x 5

150 = 2 x 3 x 52

Real Numbers Product Of Prime Factors

3072 = 2× 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3

3072= 210 X 3

Question 2. Find the H.C.F and L.C.M of the following pairs using the prime factorization method:

  1. 12 and 25
  2. 20 and 25
  3. 96 and 404
  4. 336 and 56

Solution:

1. 12 and 25

Real Numbers The Prime Factorization Method

Now

Real Numbers The Prime Factorization Methods

H.C.F = 3

and L.C.M= 2 x 2 x 3 x 5

= 60

2. 20 and 25

Real Numbers The Prime Factorization Methods

Now

Real Numbers The Prime Factorization Methods

H.C.F = 5

and L.C.M = 2 x 2 x 5 x 5

= 100

3. 96 and 404

Real Numbers The Prime Factorization Methods

Now

Real Numbers The Prime Factorization Methods

H.C.F = 2 x 2= 4

and L.C.M = 2 x 2 x 2 x 2 x 2 x 3 x 101

= 9696

4. 336 and 56

Real Numbers The Prime Factorization Methods

Now

Real Numbers The Prime Factorization Methods

H.C.F = 2 x 2 x 2 x 7 = 56

and L.c.M = 2 x 2 x 2 x 2 x 3 x 7 = 336

Question 3. Using the prime factorization Method, find the HC.F and L.C.M of the following Pairs. Hence Verify H-C.F. XL.C.M= Product of two numbers.

  1. 96 and 120
  2. 16 and 20
  3. 396 and 1080
  4. 144 and 192

Solution:

1. 96 and 120

Real Numbers The Prime Factorization

96=2x2x2 x 2 x 2 x 3

120 = 2x 2 x 2 × 3 × 5

Now, H.C.F. = 2×2×2×3=24

and LCM2 = 2 X 2 X 2 X 2 X 2 X 3 X 5 = 480

Now H.C.F X L.C. M = 12×144=24×480 = 11,520

and product of two numbers = 96X120 = 11,520

Hence, H-C.F X L.C.M = Product of two numbers

2. 16 and 20

Real Numbers The Prime Factorization

16 = 2 X 2 X 2 x 2

L.C.M = 2 * 2 * 2 * 5 = 80

Now H.C.F x L .C.F = 4 * 80 = 320

and product of two numbers = 16 * 20

Hence H.C.F= product of two numbers

3. 396 and 1080

Real Numbers The Prime Factorization

396 = 2×2 × 3 × 3 × 11

1080 = 2x2x2 × 3 × 3 × 3 × 5

Now, H.C.F. = 2 x2 x3x3 =36

and L.C.M. = 2X2 X2 X3 X3X3 X5x11

=11880

Now H.C.FXL.CM = 36X11880 = 4,27,680 and Product of two numbers = 4,27,680

Hence, H.C.F. XL.C.M = Product of two numbers

4. 144 and 192

Real Numbers The Prime Factorization

144 = 2x2x 2×2×3×3

192 = 2x2x2 × 2 × 2 × 2 × 3

Now, H.C.F=2x2x2x2 x3 = 48

and L.C.M= 2×2 X2 X2 X2 X2 X3 X3

= 576

Now H.C.FXL.CM = 48X576 = 27,648 and Product of two numbers = 144 X 192

= 27,648

Hence, H.C.F. X  L.C.M.= product of two numbers

Question 4. The H.C.F and LCM of the two numbers are 145 and 2175 respectively. If the first number is 435, find the second number.

Solution:

Here, H.GF = 145

L.C.M = 2175

Now, First no. x Second no. = H.C.F. X L.C.M.

Second no = \(\frac{\text { H.C.F. XLC.M }}{\text { Firstno. }}\)

Second no = \(\frac{145 \times 2175}{435}\)

Second no = \(\frac{315375}{435}\)

Question 5. check whether 18 n can end with the digit o for the natural number n.

Solution:

Real Numbers The Prime Factorization

18= 2 x 3 x 3 = 22 x 32

18n = (2×32) n = 2 n x32 n

It has no term containing

No Value of MEN for which 18 n ends with digit 0.

Question 6. On a morning walk, three persons step off together and their steps are 40cm, 42cm, and us cm respectively, what is the difference minimum distance each should walk so that each Can Cover the Same distance In Complete Steps?

Solution: We have to find a number (distance) that is divided by each number Completely, which means → L.CM

we have to find the L.C.M. of 400m, 42cm, and our cm to get the required distance.

Real Numbers On a morning walk

Now, L. C.M = 2 x 2 x 2 x 5×3×7 × 3 = 2520

Minimum distance each should walk = 2520 Cm

Question 7. Write the missing numbers in the following factor tree:

Real Numbers Factor Tree

Solution:

Real Numbers Factor Trees

  1. The upper box, on 7 and 13 is filled by the Product of 7 and 13, 9.
  2. The upper next box, on Sand 91 is filled by the product of 5 and 91, 1.e., 455
  3. The upper next box, on 3 and USS is filled by the product of 3 and USS, i.e., 1365
  4. The topmost box, on 3 and 1365 will be filled by the product of 3 and 1365 i.e, 4095

Question 8. State whether the given statements are true or false:
Solution:

  1. The Sum of two rationals is always rational. (True)
  2. The Sum of two irrationals is always irrational. (False)
  3. The product of two rationals is always rational. (True)
  4. The product of two irrationals is always irrational, (False)
  5. The Sum of a rational and an irrational is always rational. (False)

The product of a rational and an irrational is always rational. (True)

CBSE Solutions For Class 10 Mathematics Chapter 13 Volume And Surface Area Of Solids

Class 10 Maths Volume And Surface Area Of Solids

Question 1. A tent of cloth is Cylindrical upto I’m height and Conical above it of the Same radius of base. If the diameter of the tent is 6m and the slant height of the Conical part is 5m, find the cloth required to make this tent.
Solution:

Diameter of base 2r = 6m

CBSESE School For Class 10 Maths Chapter 10 Volume And Surface Area Of Solids A Tent Of Cloth Is Cylindrical Up To Height And Conical Of The Sum Radius Of Base

r = \(\frac{6}{2}\) = 3m

Height of Cylindrical path h = 1m

The slant height of Conical part l = 5m

Cloth required in tent = 2πrh +πrl

= πr(2h+1)

⇒ \(\frac{22}{7}\) x 3 (2×1 +5)

⇒ \(\frac{22}{7}\) x 3(10)

= 66m2

Read and Learn More Class 10 Maths

CBSE Solutions For Class 10 Mathematics Chapter 13 Volume And Surface Area Of Solids

Question 2. The volume and Surface area of a Solid hemisphere are numerically equal. What is the diameter of the hemisphere?
Solution:

We have,

Volume of hemisphere = Surface area of hemisphere

⇒ \(\frac{2}{3}\) = 3πr2

⇒ \(\frac{2}{3}\) r = 3

2r = 9

Hence, the diameter of the hemisphere = 9 units.

Question 3. 2 Cubes each of volume 64 cm3 are joined end to end. Find the Surface area of the resulting Cuboid.
Solution:

Given,

volume of cube = 64 cm3

(Side)3 = 64

(Side)3 = 43

Side = 4cm

Side of cube = 4cm

A Cuboid is formed by joining two Cubes together.

∴ For Cuboid

length l = 4+4=8cm,

breadth b = 4cm

height b = 4cm

Now, the total surface area of the cuboid.

= 2(l.b+b.h+l.h)

2(8×4+ 4×4+8×4)

= 2(32+16+32)

2(80)

= 160 cm2

Question 4. From a Solid Cylinder whose height is 2.4cm and diameter is 1.4 cm, a Conical Cavity of the Same height and diameter is hollowed out. Find the total Surface area of the remaining Solid to the nearest Cm2.
Solution:

Diameter of Cylinder 2r = 1.4cm

r = 0.7cm

∴ Radius of Cylinder = radius of cone = r= 0.70m

Height of Cylinder = height of cone

h = 2.40m

If the slant height of a cone is l, then

l2 = h2+r2 = (2.4)2 + (0.7)2

5.76 +0.49 = 6.25

1 = \(\sqrt{6.25}\) = 2.5cm

CBSESE School For Class 10 Maths Chapter 10 Volume And Surface Area Of Solids A Solid Cylinder Whose Height And Diameter The Total Surface Area Of The Remaining Solid To The Nearest Cm

The surface area of the remaining solid = area of the base of the cylinder + curved Surface of the cylinder + curved surface of the cone

πr2 + 2πrh + πrl

=πr (r+2h+1)

= \(\frac{22}{7}\) × 0.7 (0.7+2×2.4+2.5)

= \(\frac{22}{7}\) × 0.7 × (5.86) 223×0.7

= \(\frac{22}{7}\): × 4.102

= 17.6cm2

Question 5. The radius and height of a solid right Circular Cone are in the ratio of 5:12. If its volume is 314 cm3, find its total Surface area. [Take π = 3.14]
Solution:

CBSESE School For Class 10 Maths Chapter 10 Volume And Surface Area Of Solids The Radius And Height Of A Solid Right circular Cone

Let the radius of Cone = 5x

∴ Height of Cone =12x

l2 = (5x)2+ (12x)2

l2 = 25x2 +144x2

l2 = 169x2

l = \(\sqrt{169 x^2}\)

l = 13x

It is given that volume = 314 cm2

∴ \(\frac{1}{3}\)π(5x)2 (12x) = 314

⇒ \(\frac{1}{3}\) × 3.14 x 25×12 × x3 = 314

⇒  x3 = \(\frac{314 \times 3}{3.14 \times 25 \times 12}\) = 1

∴ x = 1cm

∴ Radius r = 5×1 = 5cm

Height h = 12×1 = 12cm

and slant height 1 = 13×1 = 13cm

Now, total surface area of Cone = πr(l+r) = 3.14 × 5(13+5) = 3.14×5×18

= 282.60cm2

Hence, the total surface area of cone is 282.60cm2

Question 6. The Curved Surface area of a Cone of height 8m is 188.4m2. Find the volume of Cone.
Solution:

πrl = 188.4

⇒ rl = \(\frac{188.4}{3.14}\) = 60

CBSESE School For Class 10 Maths Chapter 10 Volume And Surface Area Of Solids The Curved Surface Area Of A Cone

r2l2 = 3600

r2 (h2 +r2)=3600

r2 (64+r2)=3600

r4+64r2 = 3600 = 0

(r2 +100) (r2 – 36)=0

∴ r2 = -100 or r2=36

r = 6

(r2 = -100 is not possible)

∴ Volume of a cone = \(\frac{1}{3} \pi r^2 h=\frac{1}{3} \times 3.14 \times 36 \times 8=301.44 \mathrm{~m}^3\)

Question 7. A Conical tent is required to accommodate 157 persons, each person must have 2m2 of space on the ground and 15m3 of air to breathe. Find the height of the tent” Also Calculate the slant height.
Solution:

CBSESE School For Class 10 Maths Chapter 10 Volume And Surface Area Of Solids A Conical Tent Is Required To Accommodate Persons And Also Calculate The Slant Height

1 person needs 2m2 of Space.

∴ 157 Persons needs 2 × 157 m2 of Space on the ground.

πr2 = 2 × 157

∴ r2 = \(\frac{2 \times 157}{3.14}\)

r2 = 100

r = 10m

Also, 1 person needs 15m3 of air.

∴ 157 Persons need 15×157 m2 of air.

∴ \(\frac{1}{3}\) πr2h = 15×157

⇒ h = \(\frac{15 \times 157 \times 3}{3.14 \times 100}\) = 22.5m

∴ l2 = h2 + r2 = (225)2 + (10)2 = 606.25

∴ l = \(\sqrt{606.25}\) = 24.62m

Question 8. Three Cubes of metal whose edges are in the ratio 3:4:5 are melted down into a single cube whose diagonal is \(12 \sqrt{3}\) cm. Find the edges of the three cubes.
Solution:

The ratio in the edges = 3:4:5

Let edges be 3x, 4x and 5x respectively.

∴ Volumes of three cubes will be 27x3, 64x3, and 125x3 in cm3 respectively.

Now, the Sum of the Volumes of these three Cubes = 27x3 + 64x3+125x3

216x3 cm3

Let the edge of the new cube be a cm.

∴ Diagonal of new Cube = \(a \sqrt{3}\) cm

∴ \(a \sqrt{3}=12 \sqrt{3}\)

⇒ a = 12

∴ Volume of new Cube = (12)3 = 1728 cm3

Now by the given Condition

216x3 = 1728

x3 = 8

x = 2

∴ Edge of 1 Cube = 3×2 = 6cm

Edge of 2 Cube = 4×2 = 8 Cm

Edge of 3 Cube = 5×2 = 10cm

Question 9. A Solid is in the shape of a Cone Standing on a hemisphere with both their radii being equal to Icm and the height of the cone is equal to its radius. Find the volume of the Solid in terms of π.
Solution:

Rodius of hemisphere = radius of Cone = r = 1 cm

Height of Cone h = radius of Cone = 1 cm

Volume of hemisphere = \(\frac{2}{3}\) πr3

volume of Come = \(\frac{1}{3}\) πr2h

∴ Volume of Solid = Volume of hemisphere + volume of Come

⇒ \(\frac{2}{3} \pi r^3+\frac{1}{3} \pi r^2 h\)

⇒ \(\frac{2}{3} \pi(1)^3+\frac{1}{3} \pi(1)^2(1)\)

⇒ \(\frac{2}{3} \pi+\frac{1}{3} \pi\)

= π cm3

Question 10. A granary is in the shape of a Cuboid of a size 8m x 6m x 3m. If a bag of grain occupies a space of 0.65 m3, how many bags Can be stored in the granary?
Solution:

The Size of the granary is 8m x 6m x 3m.

∴ volume of granary =8×6×3 = 144m3

the volume of one bag of grain = 0.65m3

∴ The number of bags that can be stored in the granary

= \(\frac{\text { volume of granary }}{\text { volume of each bag }}\)

= \(\frac{144}{0.65}\)

= 221.54 or 221 bags.

Question 11. A cylindrical bucket 28cm in diameter and 72cm high is full of water. the water is emptied into a rectangular tank 66 cm long and 28cm wide. Find the height of the water level in the tank.
solution:

Let the height of the water level in the tank = xm, then according to problem

πr2h = l×b×x

Or \(\frac{22}{7} \times 14 \times 14 \times 72=66 \times 28 \times x\)

Or \(x=\frac{\frac{22}{7} \times 14 \times 14 \times 72}{66 \times 28}\)

x = 24 Cm

Question 12. A Solid Spherical ball of Iron with a radius of 6cm is melted and recast into three Solid Spherical balls. The radii of the two balls are 3cm and 4cm respectively, determining the diameter of the third ball.
Solution:

Let the radius of the third ball = r cm

∴ The volume of three balls formed = volume of the ball melted

⇒ \(\frac{4}{3} \pi(3)^3+\frac{4}{3} \pi(4)^3+\frac{4}{3} \pi(r)^3=\frac{4}{3} \pi(6)^3\)

⇒ 27 +64 +r3 = 216

⇒ r3 = 125, i.e., r = 5cm

The diameter of the third ball = 2×5cm = 10cm

Question 13. A Semicircle of radius 17.5cm is rotated about its diameter. Find the Curved Surface of So generated Solid.
Solution:

The Solid generated by a circle rotated about its diameter is a Sphere

Now, a radius of Sphere r = 17.5 cm

and its Curved Surface = 4π2

= \(4 \times \frac{22}{7} \times 17.5 \times 17.5\)

= 3850 cm2

Question 14. A sphere of radius 6cm is melted and recast into a Cone of height 6cm. Find the radius of the Cone.
Solution:

Radius of Sphere = 6cm

∴ Volume of Sphere = \(\frac{4}{3} \pi(6)^3\) = 288π cm3

Let radius of Cone = r

Height of Cone = 6cm

∴ Volume of Cone = \(\frac{1}{3} \pi r^2 h=\frac{1}{3} \pi r^2 \times 6=2 \pi r^2\)

Given that, Volume of Cone = volume of a sphere

2πr2 = 288π

r2 = 144

r = 12

Therefore, a radius of Cone = 12cm

Question 15. A metallic Cylinder of diameter 16 cm and height 9cm is melted and recast Into Sphere of diameter 6cm. How many such Spheres can be formed?
Solution:

For the Cylinder,

Radius = \(\frac{16}{2}\) = 8cm

Height = 9cm

∴ Volume of Cylinder = π (8)2(9) = 576 π cm3

Diameter of Sphere = 6cm

∴ Radius of Sphere = \(\frac{6}{2}\) = 3 cm

Now, Volume of one Sphere = \(\frac{4}{3} \pi(3)^3\) = 36π cm3

∴ Number of Spheres formed = \(=\frac{\text { volume of Cylinder }}{\text { volume of one Sphere }}\)

⇒ \(\frac{576 \pi}{36 \pi}\)

= 16

Question 16. The volume of a sphere is 288π Cm3, 27 Small Spheres Can be formed with this Sphere. Find the radius of the Small Sphere.
Solution:

Volume of 27 Small Spheres = Volume of One big Sphere = 288π

⇒ Volume of 1 Small Sphere = \(\frac{288}{27} \pi\)

⇒ \(\frac{4}{3} \pi r^3=\frac{22}{3} \pi\)

⇒ r3 = 8

⇒ r = 2cm

Question 17. A metallic Sphere of radius 4.2cm is melted and recast into the Shape of a Cylinder of radius 6cm, Find the height of the cylinder.
Solution:

Radius of Sphere R = 4.2cm

Radius of Cylinder r = 6cm

Let the height of the Cylinder = h

Now, the volume of the cylinder = Volume of the Sphere

⇒ \(\pi r^2 h=\frac{4}{3} \pi R^3\)

⇒ h = \(\frac{4 R^3}{3 r^2}\)

⇒ \(\frac{4 \times 4.2 \times 4.2 \times 4.2}{3 \times 6 \times 6} \mathrm{~cm}\)

= 2.744 сm

∴ Height of Cylinder = 2.744cm

Question 18. Metallic Spheres of radii 6cm, 8cm, and 10 cm, respectively, are melted to form a Single Solid Sphere. Find the radius of the resulting Sphere.
Solution:

Let r1 = 6cm r2 =8cm and r3 = 10cm

let the radius of a bigger Solid Sphere = R

The volume of bigger Solid Volume = Sum of volumes of three given Spheres

⇒ \(\frac{4}{3} \pi R^3=\frac{4}{3} \pi r_1^3+\frac{4}{3} \pi r_2^3+\frac{4}{3} \pi r_3^3\)

⇒ \(R^3=r_1^3+r_2^3+r_3^3\)

⇒ \(R^3=6^3+8^3+10^3\)

⇒ R3 = 216 +512 +1000

⇒ R3 = 1728

⇒ R2 = 123

⇒ R = 12cm

∴ Radius of new Solid Sphere = 12 cm

Question 19. A 20m deep well with a diameter 7m is dug and the earth from digging is evenly Spread out to form a platform 22m of the platform.
Solution:

Radius of well, r = \(\frac{7}{2} m\)

and depth h = 20m

Let the height of the platform be H meter.

∴ The volume of platform = Volume of well

⇒ 22 x 14 x H = πr2h

⇒ \(22 \times 14 \times H=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 20\)

⇒ H = \(\frac{7 \times 5}{14}\)

⇒ H = \(\frac{35}{14}\)

⇒ H = 2.5mn

Height of platform = 2.5m

Question 20. A Cone is divided into two parts by drawing a plane through the mid-point of its axis, parallel to its base, Compare the volume of the two parts.
Solution:

We Can Solve this using Similarity

Let r and h be the radius and height of a Cone OAB

CBSESE School For Class 10 Maths Chapter 10 Volume And Surface Area Of Solids A Cone Is Divided Into Two Parts By Drawing A Plane Through The Mid Point Of Its Axis

Let OE = \(\frac{h}{2}\)

As OED and OFB are Similar

∴ \(\frac{OE}{O F}=\frac{ED}{F B}\)

⇒ \(\frac{h / 2}{h}=\frac{ED}{r}\)

⇒ ED = \(\frac{r}{2}\)

Now volume of Cone OCD = \(\frac{1}{3} \pi r^2 h=\frac{1}{3} \times \pi \times\left(\frac{r}{2}\right)^2 \times \frac{h}{2}\)

⇒ \(\frac{\pi r^2 h}{24}\)

and volume of Cone DAB = \(\frac{1}{3} \times \pi x r^2 \times h\) = \(\frac{\pi r^2 h}{3}\)

∴ \(\frac{\text { volume of Part } O C D}{\text { volume of Part } C D A B}\)

⇒ \(\frac{\frac{\pi r^2 h}{24}}{\frac{\pi r^2 h}{3}-\frac{\pi r^2 h}{24}}\)

⇒ \(\frac{\frac{1}{24}}{\frac{1}{3}-\frac{1}{24}}\)

⇒ \(\frac{\frac{1}{24}}{\frac{1}{3}-\frac{1}{24}}\)

⇒ \(\frac{\frac{1}{24}}{\frac{8-1}{24}}\)

⇒ \(\frac{1}{7}\)

Question 21. A well of diameter 3m is dug lum deep. The earth taken out of it has been Spread evenly all around it in the Shape of a Circular ring of width um to form an embankment. Find the height of the embankment.
Solution:

Diameter of well 2r = 3m

r = \(\frac{2}{3}\) = 1.5m

and depth h = 14m

∴ Volume of earth taken out from well = πr2h

⇒ \(\frac{22}{7} \times 1.5 \times 1.5 \times 14=99 \mathrm{~m}^3\)

Now, the outer radius of the well, R = 1.5+4 = 5.5m

∴ Area of the ring of platform = π(R2– r2)

⇒ \(\frac{22}{7}\left[(5.5)^2-(1.5)^2\right]\)

⇒ \(\frac{22}{7}[30.25-2.25]\)

⇒ \(\frac{22}{7} \times 7 \times 4=88 \mathrm{~m}^2\)

let the height of the embankment = H

∴ 88 x H=99

⇒ \(H=\frac{99}{88}=\frac{9}{8}\)

= 1.125m

∴ Height of embankment = 1.125m

CBSE Solutions For Class 10 Mathematics Chapter 12 Area Related To Circles

CBSE Solutions For Class 10 Mathematics Chapter 12 Area Related To Circles

Question 1. Find the area of a circle whose Circumference is 440m. 
Solution: 

Circumference of a circle = 440m

2πr = 440

⇒ \(r=\frac{440 \times 7}{2 \times 22}\)

r = 70m

Area of a circle = πr2 = \(\frac{22}{77} \times 70 \times 70\)

= 22 ×10×70

= 15400 m2

Question 2. Find the radius of a Circular sheet whose area is 55442″. 
Solution: 

Area of Circular sheet

= 5544 m2

πr2 = 5544

πr2= \(\frac{5544 \times 7}{22}\)

r2 = \(\frac{38808}{22}\)

r2 = 1764

r = 42m

Read and Learn More Class 10 Maths

Question 3. The area of a Circular plot is 346.5m. Calculate the Cost of fencing the plot at the rate of ± 6 Per metre. 
Solution:

Area of plot = 346.5m2

⇒ πr2 = 346.5m2

⇒ r2 = \(\frac{3465 \times 7}{22}\)

⇒ r2= 110.25

⇒ r = 10.5m

Circumference of plot = 2πY = 2x \(\frac{22}{7}\) x 10.5 =  66m

Cost of fencing = Circumference X Cost of fencing per metre.

= 66 × 6 =7396

Question 4. The radii of the two Circles are 19 cm and 9cm respectively. Find the radius of the Circle which has a Circumference equal to the Sum of the circumferences of two circles. 
Solution: 

Here, r1 =19 cm and r2 = 9 cm

Let the radius of the new circle =R Cm

Given that,

Circumference of given two new circles = Sum of the Circumferences of given two Circles

⇒ 2πR = 2πr1 + 2πr2

⇒ R = r1+r2 = 19+9 = 28cm

Question 5. The distance of a Cycle wheel is 28cm How many revolutions will it make in moving 13.2km? 
Solution: 

Distance travelled by the wheel in one revolution = 271 = 22 = x 28 = 88m Total distance travelled by the wheel = 13.2 x 1000 x 100 cm

Number of revolution made by the wheel = \(\frac{\text { total distance }}{\text { Circumference }}\)

⇒ \(\frac{13.2 \times 1000 \times 100}{88}\)

= 15000 revolutions.

CBSE Solutions For Class 10 Mathematics Chapter 12 Area Related To Circles

Question 6. The Circumference of a Circle exceeds the diameter by 16-8 cm. Find the radius of the Circle. 

Solution: 

let the radius of the Circle be r.

Diameter = 2r

Circumference of Circle =2πr

using the given Information, we have

2πr = 2r+ 16.8

⇒ \(2 \times \frac{22}{7} \times r\) = 2r+16·8

⇒ 44r = l4r+ 16.8×7

⇒ 30r = 117.6

⇒ \(r=\frac{117.6}{30}=3.92 \mathrm{~cm}\)

Question 7. Find the area of 15cm. ring whose outer and Inner radii are respectively 20cm and 

Solution: 

Outer radius R = 200m

Immer radius r = 15 Cm

Area of ring = πT (Rr2 – r2)

Area of ring = \(\frac{22}{7}\) [(20)2 = (15)2]

⇒ \(\frac{22}{7}\) (400-225)

⇒ \(\frac{22}{7}\)  x 175

⇒ 22×25

⇒ 550cm2

Question 8. A race track is in the form of a · ring with an inner circumference of 352m and an outer Circumference of 396m. Find the width of the track. 

Solution: 

Let R and r be the outer and inner radii of the Circle.

The width of the track = (R-r) (m

Now,  2πr = 352

⇒ 2 x  \(\frac{22}{7}\) x r  = 352

⇒ r = \(\frac{352 \times 7}{2 \times 22}\)

r = 7 x 8= 56m

Again, 2πR=396

⇒ \(2 x \frac{352 \times 7}{2 \times 22}\) x R = 396

⇒ R= \(\frac{396 \times 7}{2 \times 22}\) = 7×9= 63m

R= 63m, r=56m

width of the track = (R-r)m = (63-56)m = 7m

Question 9. Two Circles touch internally. The Sum of their areas is 116π (m2 and the distance between their Centres is 6cm. Find the radii of the circles. 

Solution: 

let two circles with Centers ‘o’ and o  having radial R and r respectively touch each other at P.

It is given that θ = 6

⇒ R-r=6

⇒ R= 6+r2

Also, πR2+ πr2 = 116π

⇒ π(R2 + r2) = 116π

⇒ R2 + r2 = 116 → 2

From equations (1) and (2), we get (6+r)2 + r2 = 116

⇒ 36+r2+12r+r2=116

⇒ 27 2 +(20-80=0

⇒ r2 768-40=0

⇒ (1+(0)(x-4)=0

So r=-10 and r=4

But the radius Cannot be negative. So, we reject r=-10

r = 4cm

R=6+4=10cm

Hence, the radii of the two circles are 4cm and 10 Cm.

Question 10. The radius of a wheel of a bus is 5 cm. Determine its Speed in kilometers per hour, when its wheel makes 315 revolutions per minute. 

Solution: 

The radius of the wheel of the bus = 45 Cm

Circumference of the wheel = 2πr

⇒ \(=2 \times \frac{22}{7} \times 45=\frac{1980}{7} \mathrm{~cm}\)

Distance Covered by the wheel in One revolution = \(=\frac{1980}{7} \mathrm{~cm}\)

Distance Covered by the wheel in 315 revolution = \(\frac{1980}{7}\)

= 45 x 1980 = 89100 cm

⇒ \(\frac{89100}{1000 \times 100} \mathrm{~km}=\frac{891}{1000} \mathrm{~km}\)

Distance Covered in 60 minutes to Ihr  = \(\frac{891}{1000} \times 60=\frac{5346}{100}=\) 53.46km

Hence, Speed of bus  = 53.46 km/hr.

Question 11. A Square of the largest circle is lost as trimmings? area is cut out of a circle. What /% of the area of 

Solution: 

Let the radius of the Circle be v units,

Area of Circle = πr2 Sq. units

Let ABCD be the largest Square.

Length of diagonal = 2r= Side√2

Side = \(\frac{2 r}{\sqrt{2}}\) =√2r

Area (Square ABCD) = (Side)2 = (2x)2 = 2r2

Area of Circle lost by cutting out of a Square of largest area = 2r2

Required percentage of the area of c\(=\frac{2 r^2}{\pi r^2} \times 100=\frac{200}{\pi} \%\)

Question 12. The perimeter of a Semi Circular protractor is 32.4cm Calculate: 

  1. The radius of the protractor in Cm, 
  2.  The are of protractors in m2

Solution:

1 . let the radius of the protractor be 5cm.

Perimeter of semicircle protractor = (πr+21) Cm

r(π+2)=324

⇒ r \(\left(\frac{22}{7}+2\right)\) = 32.4

⇒ \(r \times \frac{36}{7}=32.4\)

⇒ \(\frac{324 \times 7}{36}\)

⇒ r=6.3 cm

Hence, the radius of the protractor = 6.3 cm

2) Area of Semi Circular protractor =\(\frac{1}{2} \pi r^2\)

⇒ \(\frac{1}{2} \times \frac{22}{7} \times 6.3 \times 6.3\)

⇒ 62.37 Cm2

Hence, the area of the protractor = 62.37 cm2

Question 13. The minute hand of a clock Is √21 cm long. Find the area described as the minute hand on the face of the clock between 6 am. and 605 am. 

Solution: 

In 60 minutes, the minute hand of a clock move through an angle of 360°:

In 5 minutes hand will move through an angle = 360° x 5 = 30°,

Now, r=√21 Cm and 0=30°

Area of Sector described by the minute hand between 6 am and 6.05 am.

⇒ \(\frac{\pi r^2 \theta}{360^{\circ}} \)

⇒ \(\frac{22}{7} \times(\sqrt{21})^2 \times 30^{\circ} \times \frac{1}{360^{\circ}}\)

⇒ \(\frac{22}{7} \times 21 \times \frac{1}{12}\)

Question 14.  In the adjoining figure, Calculate: 

  1. The length of minor arc ACB 
  2. Area of shaded Sector.

Solution: 

CBSE Solutions For Class 10 Maths chapter 12 The Area Of Shaded Sector

Here, θ =150°, r=14cm

1) Length of minor are = \(\frac{\pi r \theta}{180^{\circ}}\)

\(\frac{22}{7} \times 14 \times 150^{\circ} \times \frac{1}{360^{\circ}}\)

= 36.67 Cm

2) Area of shaded sector= \(\frac{\pi r^2 \theta}{360^{\circ}}\)

⇒ \(\frac{22}{7} \times(14)^2 \times 150^{\circ} \times \frac{1}{360^{\circ}}\)

⇒ \(\frac{22}{7} \times 4^2 \times 14 \times 150^{\circ} \times \frac{1}{360^{\circ}}\)

⇒ \(44 \times 14 \times 150^{\circ} \times \frac{1}{360^{\circ}}\)

= 256.67 cm2

Question 15. Find the area of a sector of a circle with a radius of 6 cm if the angle of the Sector is 60°. 

Solution: 

Here, the radius of the circle, r=6cm

The angle of Sector, θ = 60°

Area of Sector =\(\frac{\theta}{360^{\circ}} \times \pi r^2\)

⇒ \(\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 6 \times 6 \mathrm{~cm}^2\)

⇒ \(\frac{1}{6} \times \frac{22}{7} \times 6 \times 6 \mathrm{~cm}^2\)

⇒ \(=\frac{132}{7} \mathrm{~cm}^2\)

= 18.86cm2

Question 16. Find the area of a quadrant of a circle whose Circumference is 22cm.

Solution: 

Circumference of Circle, 2πr=22

⇒ \(2 \times \frac{22}{7} \times r=22\)

⇒ \(r=\frac{7}{2} \mathrm{~cm}\)

Now, the area of the quadrant of the Circle,

⇒ \(\frac{1}{4} \pi r^2\)

⇒ \(\frac{1}{4} \times \frac{2 \pi}{7} \times \frac{7}{2} \times \frac{7}{2}\)

⇒ \(\frac{1}{2} \times 11 \times \frac{1}{2} \times \frac{7}{2}\)

⇒ \(\frac{11}{4} \times \frac{7}{2}\)

⇒ \(\frac{77}{8} \mathrm{~cm}^2\)

Question 17. The length of the minute hand of a clock is 14cm. Find the area an Sq ft take Swept by the Minute hand in 5 minutes. 

Solution: 

Length of a minute hand of clock = 14cm

Radius of Circle = 14cm

Angle Subtended by minute hand in 60 min  = 360°

Angle subtended by minute hand in Iminute =\(\frac{360^{\circ}}{60^{\circ}}=6^{\circ}\)

The angle subtended by minute hand in 5 minutes = 30°

From the formula,

Area of Sector of Circle = \(\frac{\theta \pi r^2}{360^{\circ}}\)

⇒ \(=30^{\circ} \times \frac{22 \times(14)^2}{7 \times 360^{\circ}}\)

⇒ \(\frac{22 \times 14 \times 2}{12}\)

⇒ \(\frac{616}{12}\)

⇒ \(\frac{154}{3} \mathrm{~cm}^2\)

Question 18. A chord of a circle of radius 10 cm Subtends a right angle at the  Centre. Find the area of the Corresponding: 

  1. minor Segment 
  2. major segment 

Solution: 

CBSE Solutions For Class 10 Maths chapter 12 Subtends A Right Angle At The  Centre

Given the radius of the Circle, A0-10cm.

The perpendicular is drawn from the Centre of the circle to the chord of the Circle to the chord of the circle which bisects this chord.

AD=DC

and LAOD = <COD  = 45°

LAOC = LAOD + LCOD

= 45° +45° =90°

In the right AAOD,

⇒ Sin45\(=\frac{A D}{A O} \Rightarrow \frac{1}{\sqrt{2}}=\frac{A D}{10}\)

⇒ AD=5√2 Cm

and cos 45° = \(\frac{O D}{A O} \Rightarrow \frac{1}{\sqrt{2}}=\frac{O D}{10}\)

⇒ OD = 5√2 Cm

Now, AC=2AD

= 2X5√2 = 10√2 cm

Now, the area of AAOC

⇒ \(\frac{1}{2}\) X AC X OD

⇒ \(\frac{1}{2}\) x 10√2 × 5√52

= 50cm2

Now, area of Sector

⇒ \(\frac{\theta \pi r^2}{360^{\circ}}=\frac{90^{\circ}}{360^{\circ}} \times 3.14 \times(10)^2\)

⇒ \(\frac{314}{4}\)

=78.5cm2

(1)Area of minor Segment AEC

= area of sector OAEC – area of Aoc

= 78.5-50 =  28,50m2

(2)Area of major SegSector OAFGCO

= area of a circle – an area of sector OAEC = πr2-78.5

= 3-14x(10) 278.5

= 314-785

= 235.5cm2

Question 19. A chord of a circle of radius 12CM Subtends an angle of 120° at the Centre Find the area of the Corresponding Segment of the Circle. (use πT = 3.14 and √3 = 1-73) 

Solution: 

Here, the radius of the circle, r = 12 Cm

Angle Subfended by the chord at the Centre, 0=120°

Area of Corresponding minor segment

⇒ \(\frac{\pi r^2 \theta}{360^{\circ}}-\frac{1}{2} r^2 \sin \theta\)

⇒ \(r^2\left(\frac{\pi \theta}{360^{\circ}}-\frac{1}{2} \sin \theta\right)\)

⇒ \(12 \times 12 \times\left(\frac{3.14 \times 120^{\circ}}{360^{\circ}}-\frac{1}{2} \times \sin 120^{\circ}\right)\)

⇒ \(144\left(\frac{3.14}{3}-\frac{1}{2} \times \frac{\sqrt{3}}{2}\right)\)

⇒ \(144\left(\frac{3.14}{3}-\frac{1.73}{4}\right)\)

= 88,44 cm2

Question 20.  A Car has two wipers which do not overlap. Each wiper has a blade of length 25 cm Sweeping through each Sweep of the blades. an angle of 115 find the total area cleaned at 

Solution:

Given, length of wiper blade  = 25 cm = r (Say)

The angle formed by this blade, 0=115°

Area cleaned by a blade = area of Sector formed  by blade

⇒ \(\frac{\theta \pi r^2}{360^{\circ}}\)

⇒ \(115^{\circ} \times \frac{22}{7 \times 360^{\circ}} \times(25)^2\)

⇒ \(\frac{23 \times 22}{7 \times 72} \times 625\)

⇒ \(\frac{23 \times 11 \times 625}{7 \times 36}\)

Total area cleaned by two blades =  2x area cleaned by a blade

⇒ \(\frac{2 \times 158125}{252}\)

⇒ \(\frac{158125}{126} \mathrm{~cm}^2\)

CBSE Solutions For Class 10 Mathematics Chapter 14 Statistics

Class 10 Maths Statistics

Question 1. Find the mean by the direct method:

CBSE School For Class 10 Maths Chapter 14 Statistics Find The Mean By Direct Method.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics Find The Mean By Direct Method

Now,

mean \(\bar{x}=\frac{\sum f_{i x_i}}{\sum f_i}=\frac{1100}{50}=22\)

Question 2. Find the mean using the Direct Method:

CBSE School For Class 10 Maths Chapter 14 Statistics CBSE School For Class 10 Maths Chapter 14 Statistics Find The Mean Using Direct Method.

Read and Learn More Class 10 Maths

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics Find The Mean Using Direct Method

Now, mean \(\bar{x}=\frac{\sum f_{i x i}}{\sum f_i}=\frac{13,200}{50}=264\)

Question 3. The mean of the following frequency distribution is 25. Find the value of P using the direct method:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean Of The Following Distribution Is 25.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean Of The Following Distribution Is 25

Now, Mean

⇒ \(\bar{x}=\frac{\sum f_{i x i}}{\sum f_i}\)

⇒ \(\bar{x}=\frac{1230+15 p}{42+p}\)

⇒ \(25=\frac{1230+15 P}{42+P}\)

⇒ 1050 + 25P = 1230 + 15P

⇒ 25P – 15P = 1230 + 15P

⇒ 10P = 180

⇒ P = \(\frac{180}{10}\)

P = 18

CBSE Class 10 Maths Solutions Statistics

Question 4. The mean of the following distribution is 54. Find the value of P using the direct method:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean Of The Following Distribution Is 54.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean Of The Following Distribution Is 54

Now, Mean \(\bar{x}=54\)

⇒ \(\bar{x}=\frac{\sum f_{i x_i}}{\sum f_i}\)

54 = \(\frac{2070+70 p}{41+P}\)

2214+54p=2070+70P

70P-54P = 2214-2070

16P = 144

P = \(\frac{144}{16}\)

P = 9

Question 5. Find the mean from the following table using the Short Cut Method:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean From The Following Table Using Short Cut Method.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean From The Following Table Using Short Cut Method

Now, Mean a = 22.5

Mean \(\bar{x}=a+\frac{\sum f_{i d i}}{\sum f_i}\)

⇒ \(\bar{x}=22.5+\frac{0}{67}\)

⇒ \(\bar{x}=22.5\)

Question 6. Find the mean from the following table using the step. deviation method:

CBSE School For Class 10 Maths Chapter 14 Statistics Step Deviation Method.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics Step Deviation Method

Now, a = 37.5, h = 5

Mean \(\bar{x}=a+\frac{\sum f_{i u_i}}{\sum f_i} \times h\)

⇒ \(\bar{x}=37.5+\frac{-46}{50} \times 5\)

⇒ \(\bar{x}=37.5-\frac{46}{10}\)

⇒ \(\bar{x}=\frac{375-46}{10}\)

⇒ \(\bar{x}=\frac{329}{10}\)

⇒ \(\bar{x}=32.9\)

Question 7. Find the mean from the following table using the step deviation method:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean From The Following Table Using Step Deviation Method.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean From The Following Table Using Step Deviation Method

Now, a = 27.5, h = 5

mean \(\bar{x}=a+\frac{\sum f_i u_i}{\sum f_i} \times h\)

⇒ \(\bar{x}=27.5+\frac{-20}{40} \times 5\)

⇒ \(\bar{x}=\frac{220-20}{8}\)

⇒ \(\bar{x}=\frac{200}{8}\)

⇒ \(\bar{x}=25\)

Question 8. Find the median from the following data:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median From The Following Data 8.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median From The Following Data 8

Here, N = 58

∴ For Median class \(\frac{N}{2}=\frac{58}{2}=29\)

∴ Median class = 10-13

Here l1 = 10, l2 = 13

⇒ i = 13-10 = 3

f = 0, C.f = 29

∴ Median M = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{f} \times i\)

M = \(10+\frac{29-29}{0} \times 3\)

M = \(10+\frac{0}{0} \times 3\)

M = 10

Question 9. Find the Median from the following data:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median From The Following Data 9.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median From The Following Data 9

Here, N = 50

⇒ \(\frac{N}{2}=\frac{50}{2}=25\)

=25

∴ Median Class = 20-30

Now, l1 = 20, l2 = 30

i = 30-20 = 10

f = 12, C = 15

and Median M = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)

M = \(20+\frac{(25-15)}{12} \times 10\)

M = \(20+\frac{10}{6} \times 5\)

M = \(\frac{120+50}{6}\)

M = \(\frac{170}{6}\)

M = 28.33

Question 10. Find the median from the following data:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median From The Following Data.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median From The Following Data

Here N = 50

⇒ \(\frac{N}{2}=\frac{50}{2}=25\)

∴ The median class is 15-20

Now, l1 = 15, l2 = 20, i = 20-15 = 5, f = 15, C = 20

and Median M = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)

M = \(15+\frac{25-20}{15} \times 5\)

M = \(\frac{45+5}{3}\)

M = \(\frac{50}{3}\)

M = 16.67

Question 11. Find the Median for the following frequency distribution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median For The Following Frequency Distribution.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median For The Following Frequency Distribution

Now, N=340

⇒ \(\frac{N}{2}=\frac{340}{2}=170\)

∴ Median class = 39.5-46.5

∴ l1 = 39.5, l2 = 46.5, i= 46.5-39.5 = 7, f = 102, C = 199

Median M = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{f} \times i\)

M = \(39.5+\frac{(170-199)}{102} \times 7\)

M = \(39.5-\frac{29}{102} \times 7\)

M = \(39.5-\frac{203}{102}\)

M = \(\frac{4029-203}{102}\)

M = \(\frac{3826}{102}\)

M = 36.5

Question 12. Find the Median for the following frequency distribution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median Of The Following Frequency Distribution.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median Of The Following Frequency Distribution

Here N = 123

⇒ \(\frac{N}{2}=\frac{123}{2}=61.5\)

∴ Median Class = 20,5-25.5

l1 = 20.5, l2 = 25.5, i = 25.5-20.5 = 5, f = 24, C = 65

Median M = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{F} \times i\)

M = \(20.5+\frac{(61.5-65)}{24} \times 5\)

M = \(20.5-\frac{3.5}{24} \times 5\)

M = \(\frac{492-17.5}{24}\)

M = \(\frac{474.5}{24}\)

M = 20.1

Question 13. If the Median of the following frequency distribution is 32.5. Find the value of F.

CBSE School For Class 10 Maths Chapter 14 Statistics The Median Of The Following Frequency Distribution Is 325.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Median Of The Following Frequency Distribution Is 325

Here N = 34+ P

⇒ \(\frac{N}{2}=\frac{34+P}{2}\)

Median = 325 ⇒ Median class=30-40

∴ 11 = 30, l2 =40, i = 40-30=10

f = 12, C = 17

M = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{f} \times i\)

32.5 = \(30+\frac{\left(\frac{34+p}{2}-17\right)}{12} \times 10\)

32.5-30 = \(\frac{10}{12}\left(\frac{34+P}{2}-17\right)\)

2.5 = \(\frac{5}{6}\left(\frac{34+p-34}{2}\right)\)

2.5 = \(\frac{5 P}{12}\)

30 = 5P

P = \(\frac{30}{5}\)

P = 6

Question 14. Determine the median for the following income distribution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean For The Following Income Distribution.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean For The Following Income Distribution

Here N = 100

⇒ \(\frac{N}{2}=\frac{100}{2}=50\)

∴ Medion class = 300-400

∴ l1 = 300, l2 = 400, i= 400-300 = 100, f = 30, C = 33

M = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)

M = \(300+\frac{50-33}{30} \times 100\)

M = \(300+\frac{17}{30} \times 100\)

M = \(\frac{9000+1700}{30}\)

M = \(\frac{10700}{30}\)

M = 356.67

Question 15. Find the mode of the following frequency distribution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean Median And Mode Of The Following Data.

Solution:

Clearly, the modal class is 60-80 as it has the maximum frequency

∴ l = 60, f1 = 12, f0 = 10, f2 = 6, h = 20

Mode M = \(l+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)

M = \(60+\frac{12-10}{2(12)-10-6} \times 20\)

M = \(60+\frac{2}{24-16} \times 20\)

M = \(60+\frac{2}{8} \times 20\)

M = \(\frac{480+40}{8}\)

M = \(\frac{520}{8}\)

M = 65

Question 16. Given below is the frequency distribution of the heights of players in a school;

CBSE School For Class 10 Maths Chapter 14 Statistics The Frequency Distribution Of The Heights Of Players In A School.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Frequency Distribution Of The Heights Of Players In A School

Clearly, the modal class is 165.5-1685 as it has a maximum frequency

∴ l = 165.5, f1 = 142, f0 =118, f2 = 127, h=3

Mode = \(l+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)

M = \(165.5+\frac{142-118}{2(142)-118-127} \times 3\)

M = \(165.5+\frac{24}{284-245} \times 3\)

M = \(165.5+\frac{24}{39} \times 3\)

M = \(\frac{6454.5+72}{39}\)

M = \(\frac{6526.5}{39}\)

M = 167.35

Question 17. Find the mode of the following frequency distribution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mode Of The Frequency Distribution

Solution:

Clearly, the modal class is 50-60, as it has the maximum frequency

∴ l = 50, f1 = 11, f0 = 9, f2 = 6, h = 10

Mode = \(\ell+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)

M = \(50+\frac{11-9}{2(11)-9-6} \times 10\)

M = \(50+\frac{2}{22-15} \times 10\)

M = \(50+\frac{2}{7} \times 10\)

M = \(\frac{350+20}{7}\)

M = \(\frac{370}{7}\)

M = 52.86

Question 18. The following distribution represents the height of 160 students in a class;

CBSE School For Class 10 Maths Chapter 14 Statistics The Height Of 160 Students Of A Class

Solution:

Clearly, the modal class is 155-160 as it has the maximum

∴ l = 155, f1 = 38, f0 =30, f2 =24, h=5

Mode = \(l+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)

M = \(155+\frac{38-30}{2(38)-30-24} \times 5\)

M = \(155+\frac{8}{76-54} \times 5\)

M = \(155+\frac{40}{22}\)

M = \(\frac{3410+40}{22}\)

M = \(\frac{3450}{22}\)

M = 156.82

Question 19. The following table gives the weekly wage of workers in a factory:

CBSE School For Class 10 Maths Chapter 14 Statistics The Weekly Wage Of Workers In A Factory.

Find (1) the mean (2) the modal class (3) the mode

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Weekly Wage Of Workers In A Factory

1. Mean:

Mean = \(\frac{\sum f_{i x i}}{\sum f_i}=\frac{5520}{80}\)

= 69

2. Modal class = 55-60

3. Mode: clearly, the Modal class is 55-60 it has the maximum frequency

l = 55, f1 = 20, f0 = 5, f2 = 10, h = 5

M = \(l+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)

M = \(55+\frac{20-5}{2(20)-5-10} \times 5\)

M = \(55+\frac{15}{40-15} \times 5\)

M = \(55+\frac{15}{25} \times 5\)

M = \(\frac{1375+75}{25}\)

M = \(\frac{1450}{25}\)

M = 58

Question 20. The mode of the following Series is 36. Find the missing frequency in it:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mode Of The Following Series Is 36 Find The Missing Frequency

Solution:

Clearly, 30-40 is the modal class as mode 36 lies in this class

Here l = 30, f1 = 16, f0 = x (Say), f2 = 12 and h = 10 and mode 36

Mode (M) = \(\ell+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)

36 = \(30+\frac{16-x}{2(16)-x-12} \times 10\)

36 = \(30+\frac{16-x}{32-x-12} \times 10\)

36 = \(30+\frac{16-x}{20-x} \times 10\)

36 – 30 = \(\frac{16-x}{20-x} \times 10\)

6(20-x) = 10(16-x)

120-6x = 160-10x

10x-6x = 160-120

4x = 40

x = \(\frac{40}{4}\)

x = 10

Question 21. Compute the mode of the following data:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mode Of The Data.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mode Of The Data

Clearly, Modal class 29.5 – 29.5 as it has the maximum frequency

∴ l = 19.5, f1 = 23, f0 = 16, f2 = 15, h = 10

M = \(\ell+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times h\)

M = \(19.5+\frac{23-16}{2(23)-16-15} \times 10\)

M = \(19.5+\frac{7}{46-31} \times 10\)

M = \(\frac{292.5+70}{15}\)

M = 24.17

Question 22. Find the mean, Median, and mode of the following data:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mode Of The Following Frequency Distribution

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Mean Median And Mode Of The Following Data

let assumed mean A = 70, h = 20, Ef = 50, and Σfu = -19

Mean \(\bar{x}=A+\left[h \times \frac{\sum f_u}{\sum f}\right]\)

⇒ \(\bar{x}=70+\left[20 \times \frac{-19}{50}\right]\)

⇒ \(\bar{x}=70+[20 x-0.38]\)

⇒ \(\bar{x}=70-7.6\)

⇒ \(\bar{x}=62.4\)

Here N = 50

⇒ \(\frac{N}{2}=\frac{50}{2}\) = 25

Cumulative frequency just greater than 25 is 36 and the Corresponding class is 60-80.

∴ l1 = 60, f = 12, l2 = 80, C = 24, i = 80-60 = 20

Now, median (M) = \(l_1+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)

M = \(60+\frac{(25-24)}{12} \times 20\)

M = \(60+\frac{1}{12} \times 20\)

M = \(\frac{720+20}{12}\)

M = \(\frac{740}{12}\)

M = 61.66

Mode = 3(Median)-2(Mean)

Mode = 3(61.66)-2(62.4)

= 184.98-124.8

M = 60.18

Question 23. 100 Surnames were randomly picked from a local directory and the distribution of a number of letters of the English alphabet in the Surname was obtained as follows:

CBSE School For Class 10 Maths Chapter 14 Statistics 100 Surnames Were Randomly Picked From A Local Directony And Letter Of The English Alphabet.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics 100 Surnames Were Randomly Picked From A Local Directony And Letter Of The English Alphabet

let assumed mean A = 11.5, h = 3, Σf = 100, Σfu = -106

Mean \(\bar{x}=A+\left[h \times \frac{\sum(f u)}{\sum f}\right]\)

⇒ \(\bar{x}=11.5+\left[3 \times \frac{-106}{100}\right]\)

⇒ \(\bar{x}=11.5+[3 \times-1.06]\)

⇒ \(\bar{x}=11.5-3.18\)

⇒ \(\bar{x}=8.32\)

Here, N = 100

⇒ \(\frac{N}{2}=\frac{100}{2}\)

= 50

Cumulative frequency just greater than 50 is 76 and the corresponding class is 10-13

∴ l1 = 7, f = 40, l2 = 10, C = 36, i = 10-7 = 3

Median (M) = \(\ell+\frac{\left(\frac{N}{2}-C\right)}{f} \times i\)

M = \(7+\frac{50-36}{40} \times 3\)

M = \(7+\frac{14}{40} \times 3\)

M = \(\frac{280+42}{40}\)

M = \(\frac{322}{40}\)

M = 8.05

Mode = 3(Median)-2(Mean)

= 3(8.05)-2(8-32)

= 24.15-16.64

M = 7.51

Question 24. The following table gives the daily income of such workers of a factory:

CBSE School For Class 10 Maths Chapter 14 Statistics The Daily Income Of 50 Workers Of A Factory.

Find the mean, mode, and median of the above data.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Daily Income Of 50 Workers Of A Factory

let assumed mean A = 150, h = 20, Σf = 50, Σfu = -12

Mean \(\bar{x}=A+\left[h \times \frac{\sum f_4}{\sum P}\right]\)

⇒ \(\bar{x}=150+\left[20 \times \frac{-12}{50}\right]\)

⇒ \(\bar{x}=150+[20 x-0.24]\)

⇒ \(\bar{x}=150-4.8\)

⇒ \(\bar{x}=145.2\)

Here N = 50

⇒ \(\frac{N}{2}=\frac{50}{2}=25\)

Cumulative frequency just greater than 25 is 36 and the Corresponding is 120-140

∴ l1 = 120, f = 14, l2 = 140, C = 12, i = 140-120 = 20

Now, Median = \(l_1+\frac{\left(\frac{N}{2}- C\right)}{f} \times i\)

⇒ \(120+\frac{(25-12)}{14} \times 20\)

⇒ \(120+\frac{13}{14} \times 20\)

⇒ \(\frac{1680+260}{14}\)

⇒ \(\frac{1940}{14}\)

M = 138.57

Mode = 3(Median) – 2 (Mean)

M = 3(138.57)-2((45.2)

= 415.71-290.4

= 125.31

Question 25. A Survey regarding the heights (in cm) of so girls in a class was conducted and the following data was obtained:

CBSE School For Class 10 Maths Chapter 14 Statistics A Survey Regarding The Height In Cm Of 50 Girls Of A Class Was Conducted And The Following Data.

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics A Survey Regarding The Height In Cm Of 50 Girls Of A Class Was Conducted And The Following Data

Let assumed Mean A=145, h=10, Σf=50, and Σfu=24

Mean \(\bar{x}=A+\left[h \times \frac{\sum f_u}{\sum f}\right]\)

⇒ \(\bar{x}=145+\left[10 \times \frac{24}{50}\right]\)

⇒ \(\bar{x}=145+[10 \times 0.48]\)

⇒ \(\bar{x}=145+4.8\)

⇒ \(\bar{x}=149.8 \mathrm{~cm}\)

Here N = 50

⇒ \(\frac{N}{2}=\frac{50}{2}=25\)

Cumulative frequency just greater than 25 is 42 and the Corresponding is 150-160

l1 = 150, f = 20, l2 = 160, C = 22, i = 160-150 = 10

Now, Median (M) = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{F} \times i\)

⇒ \(150+\frac{(25-22)}{20} \times 10\)

⇒ \(150+\frac{30}{20}\)

⇒ \(\frac{3000+30}{20}\)

⇒ \(\frac{3030}{20}\)

= 151.5 cm

Mode = 3(Median)-2(Mean)

Mode = 3(151.5)-2(149.8)

= 454.5-299.6

= 154.9

Question 26. The table below shows the daily expenditure on food of 30 households in a locality:

CBSE School For Class 10 Maths Chapter 14 Statistics The Daily Expenditure On Food Of 30 House Holds In A Locality

Solution:

CBSE School For Class 10 Maths Chapter 14 Statistics The Daily Expenditure On Food Of 30 House Holds In A Locality.

Let assumed mean A=225, h = 50, Σf=30, Σfu = -12

Mean \(\bar{x}=A+\left[h \times \frac{\sum f u}{\sum f}\right]\)

⇒ \(\bar{x}=225+\left[50 \times \frac{-12}{30}\right]\)

⇒ \(\bar{x}=225+[50 \times -0.4]\)

⇒ \(\bar{x}=225-20\)

⇒ \(\bar{x}=205\)

Here, N = 30

⇒ \(\frac{N}{2}=\frac{30}{2}=15\)

Median Class = 200-250

l1 = 200, f = 12, l2 = 250, C = 13, i = 250-200 = 50.

Median (M) = \(l_1+\frac{\left(\frac{N}{2}-c\right)}{F} \times i\)

M = \(200+\frac{15-13}{12} \times 50\)

M = \(\frac{2400+100}{12}\)

M = \(\frac{2500}{12}\)

M = 208.33