CBSE Solutions For Class 10 Mathematics Chapter 10 Circles

CBSE Solutions For Class 10 Mathematics Chapter 10 Circles

Question 1. The radius of a Circle and 8 Cm. Calculate the length of a tangent down to this Circle from a point at a distance of 10 Cm from its Centre.
Solution:

Since the tangent is perpendicular to the radius through the paint of Contact

CBSE Solutions For Class 10 Maths chapter 10 The radius of a Circle

∠OTP = 90

In the right triangle OTP, we have

⇒  Op2 = OT2+ PT2

⇒  (10)2 = (8)2 + PT2

⇒ 100-64=PT2

⇒  PT2 = 36

⇒ PT = 6 Cm

Hence, the length of the tangent is 6cm

Read and Learn More Class 10 Maths

Question 2. Prove that the tangents drawn at the ends of the diameter of a Circle are Parallel.
Solution:

Let AB be the diameter of a circle with Centre O. PA and PB are the tangents to the Circle at pants A and B respectively.

CBSE Solutions For Class 10 Maths chapter 10 The Diameter Of The Circle

Now ∠PAB=90°

and∠QBA=90°

⇒  ∠PAB + ∠QBA = 90° +90° = 180°

PA ll QB

CBSE Solutions For Class 10 Mathematics Chapter 10 Circles

Question 3. prove that the perpendicular at the point of contact to the tangent to a Circler passes through the Centre.
Solution:

Given: A Circle with Centre 0 and a PQ tangent AQB and a Perpordicits is a dragon from point of contact Q to AB.

To prove: The perpendicular pa Passes through the Centre of the Circle.

Proof: AQ is the tangent of the Circle at point Q.

AQ will be the perpendicular to the radius of the circle.

⇒  PQ⊥AQ

⇒  The Centre of the Circle will lie on the line PQ.

Perpendicular PQ passes through the Centre of the Circle.

Question 4. A quadrilateral ABCD is drawn to Circumscribe a circle, and prove that AB+CD = AD+BC.
Solution:

As shown, the sides of a quadrilateral ABCD touch P a the Circle at P, Q, R and s. We know the tangents drawn from an external point to the Clucle are equal.

CBSE Solutions For Class 10 Maths chapter 10 A Quadrilateral

AP=AS, BP = BQ, CR = CQ, DR = DS

On adding, AP+BP + CR+DR

⇒  AB + BQ + CQ + DS

⇒ AB+CD= (AS + DS) + (BQ+CQ)

⇒  AB + CD = AP+BC

Hence proved.

Question 5. Ap is tangent to Circle 0 at point P. What is the length of OP?
solution:

Let the radius of the given Circle is r.

OP = OB = r

OA=2+r, OP=r, AP=4

∠OPA = 90°

CBSE Solutions For Class 10 Maths chapter 10 The Radius Of The Circle Point

In the right ∠OPA,

⇒  OA2= op2 +Ap2

⇒  (2+r)2 = r2+(4)2

⇒  4+r2+4r= r2+16

⇒  4r = 12 =) r=3

Op=3cm.

Question 6. If the angle between two tangents drawn from an external point p to a Clicle of radius ‘a’ and Centre 0, is 60°, then find the length of op .
Solution:

PA and PB are two tangents from an external point p such that

∠APB = 60°

∠OPA = ∠OPB = 30°

(tangents are equally inclined at the centre)

Also, ∠OAP=90°

Now, in right ∠OAP,

Sin 30° =\(=\frac{O A}{O P}\)

⇒ \(\frac{1}{2}=\frac{a}{o p}\)OP=2a units.

Question 7. In the given figure, if AB = AC, prove that BE = EC.
Solution:

We know that lengths of tangents from an external Point are equal.

CBSE Solutions For Class 10 Maths chapter 10 The Tangent

AD=AF

DB = BE

EC = FC

Now, it is given that

AB = AC

⇒  AD+DB = AF + EC

⇒  AD+DB = A8+EC

⇒  DB = EC

BE = EC

Question 8. In the given figure, AT is tangent to the Chicle with Centre 0 Such that Oto 4cm and LOTA = 30° Find the length of Segment AT.
Solution:

In the right ∠OAT,

CBSE Solutions For Class 10 Maths chapter 10 The Length Of Segment AT

Cos 30°\(=\frac{A T}{O T}\)

⇒ \( \frac{\sqrt{3}}{2}=\frac{A T}{4}\)

⇒  AT = 2√3 Cm

Question 9. The length of a tangent from point A at a distance of 5 cm from the Centre P 5cm of the Circle is ucm. Find the radius of the Circle.
Solution:

Let o be the Centre of the Circle and PQ is a tangent to the Circle from point P.

CBSE Solutions For Class 10 Maths chapter 10 The Length Of A Tangent

Given that, PQ=4cm and op=5cm

Now,∠OOP = 90°

In ∠OQP,

⇒  OQ2 = Op2= PQ2

= 52-42

=25-16=9

OQ = 3cm

Radius of Circle = 3cm

Question 10. Prove that the angle between the two tangents drawn from an external point to a circle is Supplementary to the angle Subtended by the line segment joining the points of contact at the Centre.
Solution:

PA and PB are the tangents of the Circle.

∠OAP = ∠OBP = 90°

In □ OAPB,

In □ OAPB,

∠OAP + ∠APB +∠OBP + ∠AOB = 360°

⇒ 90°+ ∠APB +90° +∠AOB = 360°

⇒  ∠APB + ∠AOB = 180°

⇒  ∠APB and ∠ADB are Supplementary

CBSE Solutions For Class 10 Mathematics Chapter 7 Co-Ordinate Geometry

CBSE Solutions For Class 10 Mathematics Chapter 7 Co-ordinate Geometry

Question 1. Find the distance between the following points.

1.  A(-6,4) and B(2,-2)

Solution:

Distance between the points (-6,4) and (2,-2)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2} \)

⇒  \(\sqrt{(2+6)^2+(-2-4)^2}\)

⇒  \(\sqrt{(8)^2+(-6)^2}\)

⇒  \(\sqrt{64+36}\)

⇒  \(\sqrt{100}\)

10 Units

2.A(-5,-1) and B (0,4)

Solution:

Distance between the points (-5,-1) and (0,4)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(0+5)^2+(4+1)^2}\)

⇒  \(\sqrt{(5)^2+(5)^2}\)

⇒  \(\sqrt{25+25}\)

⇒  \(\sqrt{50}\)

⇒  \(\sqrt{25 \times 2} \Rightarrow 5 \sqrt{2} \text { units }\)

Read and Learn More Class 10 Maths

CBSE Solutions For Class 10 Mathematics Chapter 7 Co-Ordinate Geometry

3. A(-4,-1) and B(7,3)

Solution:

Distance between the points (-4,-1) and (7,3)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(7-4)^2+(3+1)^2}\)

⇒  \(\sqrt{(3)^2+(4)^2}\)

⇒  \(\sqrt{9+16}\)

⇒  \(\sqrt{25}\)

5 Units

4. A(3,4) And B(5,2)

Solution:

Distance between the points (3,4) And (5,2)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(5-3)^2+(2-4)^2}\)

⇒  \(\sqrt{(2)^2+(-2)^2}\)

⇒  \(\sqrt{4+4}\)

⇒  \(\sqrt{8}\)

⇒  \(\sqrt{4 \times 2} \Rightarrow 2 \sqrt{2} \text { units }\)

Question 2. Find the Distance of the following points from the origin:

1. (3,-4)

Solution:

Distance between the points (3,-4) And (0,0)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(0-3)^2+(0+4)^2}\)

⇒  \(\sqrt{(-3)^2+(4)^2}\)

⇒  \(\sqrt{9+16}\)

⇒  \(\sqrt{25}\)

5 Units

2. (-8,6)

Solution:

Distance between the points (-8,6) And (0,0)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(0+8)^2+(0+6)^2}\)

⇒  \(\sqrt{(8)^2+(6)^2}\)

⇒  \(\sqrt{64+36}\)

⇒  \(\sqrt{100}\)

10 Units

Question 3. Find the Distance Between the points (a,b) and (-b, a)

Solution:

Distance between the points (-b, a) and (a,b)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(a+b)^2+(b-a)^2}\)

⇒  \(\sqrt{a^2+b^2+2 a b+b^2+a^2-2 a b}\)

⇒  \(\sqrt{2 a^2+2 b^2}\)

⇒  \(\sqrt{2\left(a^2+b^2\right)} \text { units }\)

Question 4. Find the Distance Between the points (2a,3a) and (6a,6a)

Solution:

Distance Between the points (2a,3a) and (6a,6a)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(6 a-2 a)^2+(6 a-3 a)^2}\)

⇒  \(\sqrt{(4 a)^2+(3 a)^2}\)

⇒  \(\sqrt{16 a^2+9 a^2}\)

⇒  \(\sqrt{25 a^2}\)

5a Units

Question 5. Find the Distance Between the points (a,-b)

Solution:

Distance Between the points (a,-b) and (0,0)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(0-a)^2+(0+b)^2}\)

⇒  \(\sqrt{a^2+b^2} \text { units }\)

Question 6. Find the Distance Between the points (6,0) and (0,y) is 10 units, and find the value of y.

Solution:

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(0-6)^2+(y-0)^2}\)

⇒  \(\sqrt{(6)^2+(y)^2}\)

⇒  \(\sqrt{36+y^2}\)

Given that,

⇒  \(\sqrt{36+y^2}\)

y2+36 = 100

y2= 100-36

y2 = 64

y = √64

⇒  \(y= \pm 8\)

Question 7. Find the Distance Between the points (3,x) and (-2,-6) is 13 units, and find the value of x.

Solution:

Distance Between the points (-2,-6) and (3,x)

⇒  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)

⇒  \(\sqrt{(3+2)^2+(x+6)^2} \Rightarrow \sqrt{(5)^2+x^2+36+12 x}\)

⇒  \(\sqrt{25+x^2+36+12 x}\)

⇒  \(\sqrt{x^2+|2 x+61}\)

Given that,

⇒  \(\sqrt{x^2+|2 x+61}\) = 13

⇒  \({x^2+|2 x+61}\)= 169

x2+12x+61-169=0

x2+12x+108=0

x2-6x+18x-108=0

x(x-6)(x+18)

(x-6)(x+18)=0

x-6=0 or x+18=0

x=6 or x= -18

Question 8. Prove that the following points are the vertices of a right-angled triangle:

1. A(-2,2) B(13,11) and C(10,14)

Solution:

Let the points are A(-2,2) B(13,11) and C(10,14)

AB2 = (13+2)2+(11-2)2

= (15)2+(9)2

= 225+81=306

BC2 = (10-13)2 + (14-11)2

= (3)2 +(3)2

= 9+9=18

CA2 = (10+2)2+(14-2)2

=(12)2+(12)2

=144+144=283

Therefore, AB = BC2+CA2

306=18+288

306=306

and AB2 = BC2+ CA2

ΔABC is a right-angled triangle.

2. A(-1,-6), B(-9,10), ((-7, ()

Solution:

let the points are A(-1,-6), B(-9-10) and C(-7,6)

AB2 = (9+1)2 + (-10+6)2

= (-8)2 + (-4) 2

= 64+16= 80

Bc2= (-7+9)2 + (6+10)2

= (2) 4 (16) 2

= 4+256=260

AC2= (-7+1)2 + (6+6)2

= (-6)2+(12)2

=36+144 = 180

Therefore 260=80+180

and, BC2= AB2 +AC2

ΔABC is a right-angled triangle.

Question 9. Prove that the following points are the Vertices of an Isosceles right-angled triangle:

1. A(-8-9), B(0-3) and C(-6,5)

Solution: Let the points are A(-8-9), B(0,-3) and c(-6,5)

AB2 = (0+8) + (-3+9) 2

= (8)2+(6)2

= 64+36=100

BC2 = (6=0)2 + (5+3)2

= (-6)2 +(8)2

= 36 +64 = 100

(A2= (6+8)2 + (5+9)2

= (2)2 + (14)2

= 4+196=200

Therefore, AB = BC = √100

and AC2 = AB2+BC2

ΔABC is an isosceles right-angled triangle.

2. A (9-3), B(2,-1) and c(-2,-1)

Solution:

Let the points are A(9-3), B(2,-1) and c(-2,-1)

AB2 = (2-0)2 + (-1+3)2

=(2)2+(2)2

=4+4=8

BC2 = (-2-2)2 +(-1+1)2

(-4)2=16

Ac2 = (2-0)2 + (-1+3)2

= (-2)2 + (2)2

=4+4=8

Therefore, AB=AC=√5

and BC2 = AB2 + AC2

AABC is an isosceles right-angled triangle.

Question 10. Prove that the points A(1,1), B(-1,-1) and C(√3,-√3) are the vertices of an equilateral triangle.

Solution:

Let the points are A(1, 1), B(-1,-1) and C(√3-√3)

⇒  \(AB=\sqrt{(-1-1)^2+(-1-1)^2}\)

⇒  \(AB=\sqrt{(-2)^2+(-2)^2}\)

\(AB=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}\)

⇒  \(BC=\sqrt{(\sqrt{3}+1)^2+(-\sqrt{3}+1)^2}\)

⇒  \(BC=\sqrt{3+1+2 \sqrt{3}+3+3-2 \sqrt{3}}\)

⇒  \(CA=\sqrt{(\sqrt{3}-1)^2+(-\sqrt{3}-1)^2}\)

⇒  \(CA=\sqrt{3+1-2 \sqrt{3}+3+1+2 \sqrt{3}}\)

⇒  \(CA=\sqrt{8}=2 \sqrt{2}\)

AB=BC=CA

Question 11. Prove that the points (-1,-2), (-2,-5), (-4-6), and (-3,-3) are the vertices of a Parallelogram.

Solution:

Let the points are A(-1,-2), B(-2,-5), c(-4,-6) and D(-3,-3)

⇒  \(AB=\sqrt{(-2+1)^2+(-5+2)^2}\)

⇒  \(AB=\sqrt{(-1)^2+(-3)^2}\)

⇒  \(AB=\sqrt{1+9}=\sqrt{10}\)

⇒  \(BC=\sqrt{(-4+2)^2+(-6+5)^2}\)

⇒  \(BC=\sqrt{(-2)^2+(-1)^2}\)

⇒  \(BC=\sqrt{4+1}=\sqrt{5} \)

⇒  \(CD=\sqrt{(-3+4)^2+(-3+6)^2}\)

⇒  \(CD=\sqrt{(1)^2+(3)^2}\)

⇒  \(CD=\sqrt{1+9}\)

⇒  \(CD=\sqrt{10}\)

⇒  \(AD=\sqrt{(-3+1)^2+(-3+2)^2}\)

⇒  \(AD=\sqrt{(-2)^2+(-1)^2}\)

⇒  \(AD=\sqrt{4+1}=\sqrt{5}\)

Therefore, AB = CD = √TO

BC = AD = √5

☐ ABCD is a parallelogram

Question 12. prove that the points (-4,-3), (3,2), (2,3) and (1,-2) are the vertices of a rhombus.

Solution:

let the points are ·A(-4,-3), B(-3,2), C(2,3) and (1,-2)

⇒  \(A B=\sqrt{(-3+4)^2+(2+3)^2}\)

⇒  \(A B=\sqrt{(1)^2+(5)^2}=\sqrt{1+25}=\sqrt{26}\)

⇒  \(B C=\sqrt{(2+3)^2+(3-2)^2}\)

⇒  \(B C=\sqrt{(5)^2+(1)^2}=\sqrt{25+1}=\sqrt{26}\)

⇒  \(C D=\sqrt{(1-2)^2+(-2-3)^2}\)

⇒  \(C D=\sqrt{(-1)^2+(-5)^2}=\sqrt{1+25}=\sqrt{26}\)

⇒  \(D A=\sqrt{(1+4)^2+(-2+3)^2}\)

⇒  \(D A=\sqrt{(5)^2+(1)^2}=\sqrt{25+1}=\sqrt{26}\)

⇒  \(A C=\sqrt{(2+4)^2+(3+3)^2}\)

⇒  \(A C=\sqrt{(6)^2+(9)^2}=\sqrt{36+81}=\sqrt{117}\)

⇒  \(B D=\sqrt{(1+3)^2+(-2-2)^2}\)

⇒  \(B D=\sqrt{(4)^2+(-4)^2}=\sqrt{16+16}=\sqrt{32}\)

Therefore, AB = BC= CD = DA = √26

AC and BD

〈〉 ABCD is a rhombus.

Question 13. Show that the following points are the vertices of a rectangle:

1. A(4,2), B(0,-4), c(-3,-2), D(14)

Solution.

Let the points are A (4,2), B(0,-4), C(-3,-2) and D(1,4)

⇒  \(A B=\sqrt{(0-4)^2+(-4-2)^2} \)

⇒  \(A B=\sqrt{(-4)^2+(-6)^2}=\sqrt{16+36}=\sqrt{52}\)

⇒  \(B C=\sqrt{(-3-0)^2+(-2+4)^2}\)

⇒  \(B C=\sqrt{(-3)^2+(-2)^2}=\sqrt{9+36} \sqrt{9+4}=\sqrt{13}\)

⇒  \(C D=\sqrt{(-3+1)^2+(4+2)^2}\)

⇒  \(C D=\sqrt{(-4)^2+(6)^2}=\sqrt{18+36}=\sqrt{52}\)

⇒  \(A D=\sqrt{(1-4)^2+(4-2)^2}\)

⇒  \(A D=\sqrt{(-3)^2+(2)^2}=\sqrt{9+4}=\sqrt{13}\)

Therefore, AB = CD=√52

BC=AD = √13

☐ ABCD is a rectangle

2. A(1,-1), B(2, 2), C(4,8), D(7,5)

Solution:

Let the points are A(1,-1), B(-2,2), c(4,8) and D(7,5)

⇒  \(A B=\sqrt{(-2-1)^2+(2+1)^2}\)

⇒  \(A B=\sqrt{(-3)^2+(3)^2}=\sqrt{9+9}=\sqrt{18}\)

⇒  \(B C=\sqrt{(4+2)^2+(8-2)^2}\)

⇒  \(B C=\sqrt{(6)^2+(6)^2}=\sqrt{36+36}=\sqrt{72}\)

⇒  \(C D=\sqrt{(7-4)^2+(5-8)^2}\)

⇒  \(C D=\sqrt{(3)^2+(3)^2}=\sqrt{9+9}=\sqrt{18}\)

⇒  \(A D=\sqrt{(7-1)^2+(5+1)^2}\)

⇒  \(A D=\sqrt{(6)^2+(6)^2}=\sqrt{36+36}=\sqrt{72}\)

Therefore, AB = CD= √18

BC=AD = √72

☐ ABCD is a rectangle

Question 14. Show that the points A(2,1),B(0,3), C(-2,1) and D(0,-1) are the Vertices of a Square.

Solution:

Let the points are A(2,1), B(0,3), C(-2, 1) and D(0,-1)

⇒  \(A B=\sqrt{(3-2)^2+(3-1)^2}\)

⇒  \(A B=\sqrt{(-2)^2+(2)^2}=\sqrt{4+4}=\sqrt{8}\)

⇒  \(B C=\sqrt{(-2-0)^2+(1-3)^2}\)

⇒  \(B C=\sqrt{(-2)^2+(-2)^2}=\sqrt{4+4}=\sqrt{8}\)

⇒  \(C D=\sqrt{(2)^2+(-2)^2}=\sqrt{4+4}=\sqrt{8}\)

⇒  \(A D=\sqrt{(0-2)^2+(-1-1)^2}\)

⇒  \(A D=\sqrt{(-2)^2+(-2)^2}=\sqrt{4+4}=\sqrt{8}\)

⇒  \(A C=\sqrt{(-2-2)^2+(1-1)^2}\)

⇒  \(A C=\sqrt{(-4)^2}=\sqrt{16}=4\)

⇒  \(B D=\sqrt{(0-0)^2+(-1-3)^2}\)

⇒  \(B D=\sqrt{(-4)^2}=\sqrt{16}=4\)

Therefore, AB = BC= CD=AD=√8

AC=BD=4

☐ ABCD is a Square

Question 15. Show that the points (1,1), (2,3) and (5,9) are collinear.

Solution:

⇒  \(A B=\sqrt{(2-1)^2+(3-1)^2}\)

⇒  \(A B=\sqrt{(1)^2+(2)^2}=\sqrt{1+4}=\sqrt{5}\)

⇒  \(B C=\sqrt{(9-3)^2+(5-2)^2}\)

⇒  \(B C=\sqrt{(6)^2+(3)^2}=\sqrt{36+9}=\sqrt{45}=\sqrt{9 \times 5}=3 \sqrt{5}\)

⇒  \(A C=\sqrt{(5-1)^2+(9-1)^2}\)

⇒  \(A C=\sqrt{(4)^2+(8)^2}=\sqrt{16+64}=\sqrt{80}\)

⇒  \(\sqrt{16 \times 5}=4 \sqrt{5}\)

Now, AB+BC = √5 +3√5 = 4√5 = AC

Points A, B, and care collinear.

Question 16. Show that the points (0,0), (5, 3), and (10,6) are Collinear.

Solution:

let the points are A(0,0), B(5, 3) and c(10,6)

⇒  \(A B=\sqrt{(5-0)^2+(3-0)^2}\)

⇒  \(A B=\sqrt{(5)^2+(3)^2}=\sqrt{25+9}=\sqrt{34} \)

⇒  \(B C=\sqrt{(10-5)^2+(6-3)^2}\)

⇒  \(B C=\sqrt{(5)^2+(3)^2}=\sqrt{25+9}=\sqrt{34}\)

⇒  \(A C=\sqrt{(10-0)^2+(6-0)^2} [/atex][/atex]\)

⇒  \(A C=\sqrt{(16)^2+(6)^2}=\sqrt{100+36}=\sqrt{136}=2 \sqrt{34}\)

Therefore, AB+BC= √34+ √34 = 2√34 = AC

Points A, B, and Care Collinear.

Question 17. Find the coordinates of a point that divides the line joining the points (5,3) and (10,8) in the ratio 2:3 internally.

Solution:

Let the Co-ordinates of the required point be (1,9).

Here, (X, Y1) = (5, 3) and (X2 Y2) = (10,8)

m : n = 2 : 3

⇒  \(x=\frac{m x_2+n x_1}{m+n}=\frac{2(10)+3(5)}{2+3}=\frac{20+15}{5}=\frac{35}{5}=7\)

⇒  \(y=\frac{m y_2+n y_1}{m+n}=\frac{2(8)+3(3)}{2+3}=\frac{16+9}{5}=\frac{25}{5}=45\)

Coordinates of required point = (7,5)

Question 18. Find the Coordinates of a point that divides the line joining the points (-1,2) and (3,5) in the ratio 3:5 internally.

Solution:

Let the Co-ordinates of the required point be (x, y)

Here, (X1, y1) = (-1,2) and (x2,y2)=(3,5)

m:n = 3:5

⇒  \(x=\frac{m x_2+n x_1}{m+n}=\frac{3(3)+5(-1)}{3+5}=\frac{9-5}{8}=\frac{4}{8}=\frac{1}{2}\)

⇒  \(y=\frac{m y_2+n y_1}{m+n}=\frac{3(5)+5(2)}{3+5}=\frac{15+10}{8}=\frac{25}{8}\)

Co-ordinates of required point \(=\left(\frac{1}{2}, \frac{25}{8}\right)\)

Question 19. Find the Co-ordinates of a point that divides the line. Segment joining the points (1,3) and (4,6) in the ratio 2:1 internally.

Solution:

Let the Co-ordinates required point be (x,y)

Here, (X1,Y1) = (1,3) and (X2, y2) = (-4,6)

m:n = 2:1

⇒  \(x=\frac{m x_2+n x_1}{m+n}=\frac{2(-4)+1(1)}{2+1}=\frac{-8+1}{3}=\frac{-7}{3}\)

⇒  \(y=\frac{m y_2+n y_1}{m+n}=\frac{2(6)+1(3)}{2+1}=\frac{12+3}{3}=\frac{15}{3}=5\)

Coordinates of required point \( =\left(-\frac{7}{3}, 5\right)\)

Question 20. If point A lies on the line segment joining the points P(6,0) and $(0,0) Such that AP: AQ = 2:3, find the coordinates of point A.

Solution:

Let the Co-ordinates require point A (1,4)

Here, (X1,Y1,) = (6,0) and (x2,y2) = (0,8)

m:n=2:3

⇒  \(x=\frac{m x_2+n x_1}{m+n}=\frac{2(0)+3(6)}{2+3}=\frac{18}{5}\)

⇒  \(y=\frac{m y_2+n y_1}{m+n}=\frac{2(8)+3(0)}{2+3}=\frac{16}{5}\)

Co-ordinates of required point A\(\left(\frac{18}{5}, \frac{16}{5}\right)\)

Question 21. Find the ratio in which the Y-axis divides the line segment joining the points (3,4) and (-2,5).

Solution:

Let Y-axis divide the join of pants (3,4) and (-2,1) in the ratio k:1.

⇒  \(\frac{k \cdot x_2-1 \cdot x_1}{k+1}=0 \)

⇒  \(\frac{k(-2)+1 \cdot(3)}{k+1}=0\)

⇒  \(\frac{-2 k+3}{k+1}=0 \)

⇒  \(-2 k+3=0 \)

⇒  \(-2 k=-3 \)

⇒  \(k=\frac{3}{2}\)

required ratio = 3:2

Question 22. Find the Co-ordinates of the mid-point of the line joining the following points:

1. (2,4) and (6,2)

Solution: Co-ordinates of the mid-point of AB = \(\left(\frac{2+6}{2}, \frac{4+2}{2}\right)=\left(\frac{8}{2}, \frac{6}{2}\right)=(4,3)\)

2. (0,2) and (2,-4)

Solution: Co-ordinates of mid-point of AB = \(\left(\frac{0+2}{2}, \frac{-4+2}{2}\right)=\left(\frac{2}{2}, \frac{-2}{2}\right)=(1,-1)\)

3. (a+b, a-b) and (b-a, a+b)

Solution: Co-ordinates of mid-point of AB= \(\left(\frac{a+b+b-a}{2}, \frac{a-b+a+b b}{2}\right)=\left(\frac{2 b}{2}, \frac{2 a}{2}\right)\) = (b,a)

4. (3,-5) and (-1,3)

Solution: Co-ordinates of mid-point of AB= \(=\left(\frac{3-1}{2}, \frac{-5+3}{2}\right)=\left(\frac{2}{2}, \frac{-2}{2}\right)=(1,-1)\)

Question 23. The coordinates of the endpoints of the diameter of a Circle are (3,-2) and (-3,6). Find the Co-ordinates of the Centre and radius.

Solution: Let the points be (3,-21) (-3,6)

⇒  \(\left(\frac{3-3}{2}, \frac{-2+6}{2}\right)\)

⇒  \(\left(0, \frac{4}{2}\right)=\left(0, \frac{4}{2}\right)\)

Center = (0,2)

Distance d = \(d=\sqrt{(-3-3)^2+(6+2)^2}\)

⇒  \(d=\sqrt{(-6)^2+(8)^2} \)

⇒  \(d=\sqrt{36+64}\)

⇒  \(d=\sqrt{100}=10\)

radius=\(\frac{\text { diameter }}{2}=\frac{10}{2}=5\)

Co-ordinates of the Centre (0,2) and radius = 5.

Question 24. The Co-ordinates of the vertices of a 4ABC are A(1, 0), B(3,6) and ((3,2). Find the length of its medians.

Solution:

let the points are A(1,0), B(3,6) and ((3,2)

let Ap be the median drawn from Vertex A.

The midpoint of BC is p.

Now, the Co-ordinates of P

⇒  \(\left(\frac{3+3}{2}, \frac{6+2}{2}\right)=\left(\frac{6}{2}, \frac{8}{2}\right)=(3,4)\)

⇒  \(AP =\sqrt{(3-1)^2+(4-0)^2}\)

⇒  \(\sqrt{(2)^2+(4)^2}\)

⇒  \(\sqrt{4+16} \)

⇒  \(\sqrt{20}\)

⇒  \(\sqrt{5 \times 4}=2 \sqrt{5}\)

let Bp be the median drawn from vertex Vertex B.

The mid-point Ac is p \(\left(\frac{1+3}{2}, \frac{0+2}{2}\right)=\left(\frac{4}{2}, \frac{2}{2}\right)=(2,1)\)

⇒  \(\text { and } B p=\sqrt{(2-3)^2+(1-6)^2}\)

⇒  \(\sqrt{(-1)^2+(-5)^2}\)

⇒  \(\sqrt{1+25}=\sqrt{26}\)

Let Cp be the median drawn from Vertex C.

The mid-point AB is P

⇒  \(\left(\frac{1+3}{2}, \frac{0+6}{2}\right)=\left(\frac{4}{2}, \frac{6}{2}\right)=(2,3)\)

and \(C p=\sqrt{(2-3)^2+(3-2)^2}\)

⇒  \(\sqrt{(-1)^2+(1)^2} \)

⇒  \(\sqrt{2}\)

Question 25. The coordinates of three consecutive vertices of a Parallelogram are (2,0), (4,1) and (6,4). Find the Coordinates of its 4th vertex.

Solution: Let A(2,0), B(4,1), c(6,4), and D(X, Y) be the vertex of a parallelogram ABCD.

We know that the diagonals of a parallelogram bisect each other.

Co-ordinates of the mid-point of AC = Co-ordinates of the mid-point of BD

⇒  \(\left.\left(\frac{2+6}{2}\right), \frac{0+4}{2}\right)=\left(\frac{4+x}{2}, \frac{1+4}{2}\right)\)

⇒  \(\left(\frac{8}{2}, \frac{4}{2}\right)=\left(\frac{4+x}{2}, \frac{1+y}{2}\right)\)

⇒  \((4,2)=\left(\frac{4+x}{2}, \frac{1+y}{2}\right)\)

⇒  \(4=\frac{4+x}{2} \text { and } 2=\frac{1+y}{2}\)

8=4+x and 4=1+y

x=4 and y=3

Co-ordinates of fourth vertex = (4,3)

Question 26. Find the Coordinates of the points of trisection of the line segment joining the points (2,5) and (6-2).
Solution:

Let P(a,b) and Q(c,d) trisect the line joining the points A(2,5) and B(6,-2).

Now, Point Pla,b) divides the line AB in the ratio 1:2.

⇒  \(a=\frac{1(2)+2(6)}{1+2}=\frac{2+12}{3}=\frac{14}{3}\)

⇒  \(b=\frac{1(5)+2(-2)}{1+2}=\frac{5-4}{3}=\frac{1}{3}\)

Therefore, co-ordinate of point p= \(\left(\frac{14}{3}, \frac{1}{3}\right)\)

Q(c,d) divides the line AB in the ratio 2:1

⇒  \(c=\frac{2(2)+1(6)}{2+3}=\frac{4+6}{3}=\frac{10}{3}\)

⇒  \(d=\frac{2(5)+1(-2)}{2+1}=\frac{10-2}{3}=\frac{8}{3}\)

Therefore, Co-ordinates of Q =\(\left(\frac{10}{3}, \frac{8}{3}\right)\)

Co-ordinates of points of trisection of AB \(=\left(\frac{14}{3}, \frac{1}{3}\right) \text { and }\left(\frac{10}{3}, \frac{8}{3}\right) \text {. }\)

Question 27. Find the Coordinates of the points of trisection of the line segment joining the points (-2,0) and (4,0).

Solution:

Let P(a,b) and Q(Cd) trisect the line joining the points A(-2,0) and B(4,0).

Now, Point (a,d) divides the line AB in the ratio 1:2.

⇒  \(a=\frac{1(-2)+2(4)}{1+2}=\frac{-2+8}{3}=\frac{6}{3}=2\)

⇒  \(b=\frac{1(0)+2(0)}{1+3}=0\)

Therefore, the Co-ordinate of point P = (2,0)

Q(c,d) divides the line AB in the ratio 2:1

⇒  \(c=\frac{2(-2)+1(4)}{1+2}=\frac{-4+4}{3}=0\)

⇒  \( d=\frac{2(0)+1(0)}{1+2}=0\)

Therefore, Co-ordinates of Q = (0,0)

Co-ordinates of points of trisection of AB =(2,0) and (0,0)

Question 28. Find the ratio in which the join of points (3,-1) and (8,9) is divided by the line y-x+2=0.

Solution:

let the line y-x+2=0 divide the line segment joining the points (3-1) and (8,9) in the ratio k:1.

Co-ordinates of p= \(\left(\frac{8 k+3}{k+1}, \frac{9 k-1}{k+1}\right)\)

but this point p lies on the line y-x+2=0

⇒  \(\frac{9 k-1}{k+1}-\frac{8 k+3}{k+1}+2=0\)

9 k-1-8 k+3+2 k+2=0

3k=2

⇒  \(k=\frac{2}{3}\)

Required ratio \(=\frac{2}{3}\):1 – 2:3

Question 29. Find the area of that triangle whose vertices are (2,3), (-3,4), and (7,5).

Solution:

Area of triangle =\(\frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)

⇒  \(\frac{1}{2}[2(4-5)-3(5-3)+7(3-4)]\)

⇒  \(\frac{1}{2}[2(-1)-3(2)+7(-1)]\)

⇒  \(\frac{1}{2}[-2-6-7]\)

⇒  \(\frac{-15}{2}\)

But the area of the triangle Cannot be negative

Area of triangle = \(\frac{-15}{2}\) Square units

Question 30. Find the area of that triangle whose vertices are (1,1), (-1,4) and (3,2).

Solution:

Area of triangle=\( \frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)

⇒  \(\frac{1}{2}[1(4-2)-1(2-1)+3(1-4)]\)

⇒  \(\frac{1}{2}(1(2)-1(1)+3(-3)]\)

⇒  \(\frac{1}{2}[2-1-9]\)

⇒  \(\frac{1}{2}[-8]\)

= -4

But the area of the triangle Cannot be negative.

Area of triangle = 4 Square units.

Question 31. Find the area of that triangle whose vertices are (5,2), (-4,3), and (-2,1)

Solution:

Area of triangle = \( \frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+y_3\left(y_1-y_2\right)\right] \)

⇒  \(\frac{1}{2}[5(3-1)-4(1-2)-2(2-3)] \)

⇒  \(\frac{1}{2}[5(2)-4(-1)-2(-1)]\)

⇒  \(\frac{1}{2}[10+4+2]\)

⇒  \(\frac{16}{2}=8\)

Question 32. Find the area of that triangle whose vertices are (b+c, a), (b-ca), and (9, -a),

Solution:

Area of triangle =\( \frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)

⇒  \(\frac{1}{2}[b+c(a+a)+b-c(-a-a)+a(a-a)]\)

⇒  \( \frac{1}{2}\left[b a+b b+c a+c a-b b-b a+c a+c a+a^2-\alpha^2\right]\)

⇒  \( \frac{1}{2}[4 a c]\)

= 2ac

Area of triangle = 2ac Square units

Question 33. Prove that the following points are Collinear:

1. (2,1), (4,3), and (3,2)

Solution: Area of triangle = \( \frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)

⇒  \( \frac{1}{2}[2(3-2)+4(2-1)+3(1-3)]\)

⇒  \( \frac{1}{2}[2(1)+4(1)+3(-2)]\)

⇒  \( \frac{1}{2}[2+4-6]\)

⇒  \( \frac{1}{2}[6-6]\)

⇒  \( \frac{1}{2}(0)=0\)

Therefore, the given points are collinear.

2. (9,6), (1,6) and (-7,-6)

Solution: Area of triangle =\( \frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)

⇒  \(\frac{1}{2}[9(0+6)+1(-6-6)-7(6-0)]\)

⇒  \(\frac{1}{2}[9(6)+12-7(6)]\)

⇒  \(\frac{1}{2}[54-12-42]\)

⇒  \(\frac{1}{2}[54-54]\)

⇒  \(\frac{1}{2}(0)=0\)

Therefore, the given points are collinear

3. (b+c, 2), (c+a, b), and (a+b, c)

Solution: Area of triangle = \( \frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)

⇒  \( \frac{1}{2}[b+c(b-c)+c+a(c-a)+a+b(a-b)]\)

⇒  \( \frac{1}{2}\left[b^2-b c+c b-c^2+c^2-ca+ac-a^2+ a^2-ab+ba-b^2\right]\)

⇒  \( \frac{1}{2}\)

These fore, the given points are collinear.

4. (5,6), (-1,4) and (2,5)

Solution:

Area of triangle =\( \frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)

⇒  \(\frac{1}{2}[5(4-5)-1(5-6)+2(6-4)]\)

⇒  \(\frac{1}{2}[5(-1)-1(-1)+2(2)]\)

⇒  \(\frac{1}{2}[-5+1+4]\)

⇒  \(\frac{1}{2}[-5+5]\)

⇒  \(\frac{1}{2}(0)=0\)

Therefore given points are Collinear.

Question 34.1. If the points (2,3), (5,k), and (6,7) are Collinear, find the value of k.

Solution: Given points are Collinear

Area of triangle = 0

⇒  \(\frac{1}{2}[2(k-7)+5(7-3)+6(3-7)\)

⇒  \(\frac{2}{2}[2 k-14+20-24]=0\)

⇒  \(\frac{1}{2}[2 k-13]=0\)

⇒  2 k-18=0

⇒  2 k=17

⇒  \(k=\frac{18}{2}\)

⇒  K = 9

2. If the points A(k+1,2k), B(3k, 2k+3) and C(SK-1,5k) are collinear, find the Value of k.

Solution: Given points are Collinear

Area of Triangle = 0

⇒  \(\frac{1}{2}[k+1(2 k+3-5 k)+3 k(5 k-2 k)+5 k-1(2 k-2 k-3)]=0\)

⇒  \(\frac{1}{2}[k+1(-3 k+3)+3 k(3 k)+5 k-1(-3)]=0\)

⇒  \(\frac{1}{2}\left[-3 k^2-3 k+3 k+3+9 k^2-15 k+3\right]=0\)

⇒  \(\frac{1}{2}\left[6 k^2-15 k+6\right]=0 \)

⇒  \(\frac{3}{2}\left[2 k^2-5 k+2\right]=0\)

⇒  2x2=5k+2=0

⇒  2k2-4k-k+2=0

⇒  2k(k-2)-(K-2)=0

⇒ (2k-1) (k-2)=0

⇒  2k-1=0 and K-2=0

⇒  2k = 1

⇒  k= \(\frac{1}{2}\)

Question 35. If the points (x, y), (-1,3) and (5,-3) are Collinear, then Show that x+y=2.

Solution:

Given points are Collinear

Area of triangle = 0

⇒  \(\frac{1}{2}[x(3+3)-1(-3-y)+5(y-3)]=0 \)

⇒  \(\frac{1}{2}[x(6)+3+y+5 y-3(5)=0\)

⇒  \(\frac{1}{2}[6 x+6 y-12]=0\)

⇒  \(\frac{6(x+y-2)}{2}=0\)

⇒  x+y=2

Question 36. Find the Values of y for which the distance between the points A(3,-1) and B(11,y) is 10 units.

Solution:

Distance between the points A(3,-1) B(11,y)

⇒  \(AB =\sqrt{(11-3)^2+(y+1)^2}=10\)

⇒  \((8)^2+y^2+1+2 y=100\)

⇒  \( 64+y^2+1+2 y-100=0 \)

⇒  \( y^2+2 y-35=0\)

⇒  \(y^2-5 y+7 y-35=0\)

⇒  y(y-5)+7(9-5)=0

⇒   (y+7) (4-5)=0

⇒  4+7=0 or 4-5=0

⇒  y=-7 or y=5

Question 37. Find the relation between x and y Such that the point p(x,y) is equidistant from the points A(1,4) and B (-1,2).

Solution:

Given that P(x,y) A(1,4) and B(-12)

⇒  PA= PB ⇒ PA2+ PB2

⇒  \( (x-1)^2+(y-4)^2=(y+1)^2+(y-2)^2 \)

⇒  \(x^2+\left(-2 x+y^2+16-8 y=x^2+1+2 x+y^2+4-4 y\right.\)

⇒  -2x-8y+17-2x+4y-5=0

⇒  -4x-4y+12=0 -4(x+y-3)=0

⇒  x+4=3

Question 38. Find the point on the y-axis which is equidistant from the points (-512) and (9,-2).

Solution:

let the required point on the y-axis be p(0,4) and the given points be A(-5,2) and B(9,-2).

Now, given that

PA=PB ⇒ PA2 = PB2

⇒  (0+5)2 + (9-2)2 = (6-9) + (Y+2)2

⇒  25+4 + 4-4y= 81+ y2+4+499

⇒  -44+29-44-85= 0

⇒  -8y-16=0

⇒  -8y=16

⇒  \(y=\frac{-16}{8}\)

y= -2

Question 39. Show that the pants (1,1), (1,5), (7,9) and (9,5) taken in that order, are the Vertices of a rectangle

Solution:

Given points are A(1, 1), B(-1,5), ((7,9) and D(9,5)

⇒  \(A B=\sqrt{(-1-1)^2+(5-1)^2}\)

⇒  \(\sqrt{(-2)^2+(4)^2}=\sqrt{4+16}=\sqrt{20}\)

⇒  \(B C=\sqrt{(7+1)^2+(9-5)^2}\)

⇒  \(\sqrt{(8)^2+(4)^2}=\sqrt{64+16}=\sqrt{80}\)

⇒  \(C D=\sqrt{(9-7)^2+(5-9)^2}\)

⇒  \(\sqrt{(2)^2+(-4)^2}=\sqrt{4+16}=\sqrt{20}\)

⇒  \(A D=\sqrt{(9-1)^2+(5-1)^2}\)

⇒  \(\sqrt{(8)^2+(4)^2}=\sqrt{64+(6}=\sqrt{80}\)

⇒  \(A B=C D=\sqrt{20}\)

⇒  \(B C=A D=\sqrt{80}\)

☐ ABCD is a rectangle.

Question 40. Show that the points ‘A (3,5), B( 6,01, C(,-3), and D(-2,2) are the Vertices of a Square ABCD.

Solution:

Given that

⇒  \(A B=\sqrt{(6-3)^2+(0-5)^2}=\sqrt{(3)^2+(-5)^2}=\sqrt{9+25}=\sqrt{34}\)

⇒  \(B C=\sqrt{(1-6)^2+(-3-0)^2}=\sqrt{(-5)^2+(-3)^2}=\sqrt{25+9}=\sqrt{34}\)

⇒  \(C D=\sqrt{(-2-1)^2+(2+3)^2}=\sqrt{(-3)^2+(5)^2}=\sqrt{9+25}=\sqrt{34}\)

⇒  \(A D=\sqrt{(-2-3)^2+(2-5)^2}=\sqrt{(-5)^2+(-3)^2}=\sqrt{25+9}=\sqrt{34}\)

⇒  \(A C=\sqrt{(1-3)^2+(-3-5)^2}=\sqrt{(-2)^2+(-8)^2}=\sqrt{4+64}=\sqrt{68}\)

⇒  \(B D=\sqrt{(-2-6)^2+(2-0)^2}=\sqrt{(-8)^2+(2)^2}=\sqrt{64+4}=\sqrt{68}\)

⇒  \(A B=B C=C D=A B=\sqrt{34}\)

⇒  \(A C=B D=\sqrt{63}\)

CBSE Solutions For Class 10 Mathematics Chapter 15 Probability

CBSE Solutions For Class 10 Mathematics Chapter 15 Probability

Question 1. In any situation that has only two possible outcomes, each outcome will have Probability. Find whether it is true or false.
Solution: False.

The probability of each outcome will be \(\frac{1}{2}\), only when the two outcomes are equally likely.

Question 2. A Marble is chosen at random from 6 marbles numbered 1 to 6. Find the Probability of getting a marble having number 2 and 6 on it.
solution:

The favourable Case is to get a marble on which both numbers 2 and are written. But there is no such marble.

So, N(E) = 0 and n(S) = 6

∴ Required probability = \(\frac{n(E)}{n(S)}=\frac{0}{6}=0\)

Question 3. A marble is chosen at random from 6 marbles numbered Ito 6. Find the Probability of getting a marble having number 2 or 6 on it.
Solution:

Here N(E) = 2

and n(S) = 6

∴ Required Probability = \(\frac{2}{6}=\frac{1}{3}\)

Read and Learn More Class 10 Maths

CBSE Class 10 Maths Solutions Probability

Question 4. It is given that in a group of 3 Students, the probability of 2 students not having the Same birthday is 0.992. What is the probability that the 2 students have the Same birthday.
Solution:

The probability of 2 students not having the Same birthday = 0.992

∴ Probability of 2 students having the same birthday

= 1-0.992

= 0.008

Question 5. A bag Contains 3 red balls and 5 black balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is

  1. Red?
  2. Not ved?

Solution:

Total balls = 3+5 = -8

Total possible outcomes of drawing a ball at random from the bag = 8

1. Favorable outcomes of drawing a batt at random red ball =3

∴ The probability of drawing a red ball

⇒ \(\frac{\text { Favourable outcomes of drawing a red ball }}{\text { Total possible outcomes }}\)

⇒ \(\frac{3}{8}\)

2. Probability that the ball drawn is not red = 1- probability that the ball drawn

⇒ \(1-\frac{3}{8}=\frac{5}{8}\)

Question 6. A die is thrown once. Find the probability of getting:

  1. A prime number
  2. A number lying between 2 and 6
  3. An odd number.

Solution:

Possible outcomes in one throw of a die = {1,2,3,4,5,6}

Total possible outcomes = 6

1. Prime numbers = {2,3,5}=3

∴ Probability of getting prime number = \(\frac{3}{6}=\frac{1}{2}\)

2. Numbers lying between 2 to 6 = {3, 4, 5} = 3

∴ Probability of this event = \(\frac{3}{6}=\frac{1}{2}\)

3. Odd numbers = {1,3,5}=3

∴ Probability of this event = \(\frac{3}{6}=\frac{1}{2}\)

Question 7. 12 defective pens are accidentally mixed with 132 good to just look at a pen and tell whether or not it is taken out at random from this lot. Determine the probability Out is a good one.
Solution:

No. of good pens = 132

No. of defective pens = 12

Total pens = 132 +12 = 144

Total Favourable outcomes of drawing a pen = 144

Favourable outcomes of drawing a good pen = 132

∴ Probability of drawing a good pen = \(\frac{132}{144}=\frac{11}{12}\)

Question 8. A child has a die whose Six faces show the letters as

CBSE School For Class 10 Maths Chapter 15 Probability A Child Has A Die Whose Six Fases Show The Letters

given below; The die is thrown once. what is the probability of getting

  1. A?
  2. D?

Solution:

Total possible outcomes in a throw of die = 6

1. Favourable outcome of getting A = 2

∴ Probability of getting \(A=\frac{2}{6}=\frac{1}{3}\)

2. Favourable outcomes of getting D = 1

∴ Probability of getting D = \(\frac{1}{6}\)

Question 9. A box Contains 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears

  1. A two-digit number,
  2. A number divisible by 5.

Solution:

We have, n(S) = 90

1. Let A be the event of getting “a two-digit number”.

∴ Favourable cases are 10,11,12,13,14, …….., 90

∴ n(A) = 81

∴ P(A) = \(\frac{n(A)}{n(S)}=\frac{81}{90}=\frac{9}{10}\)

2. let B be the event of getting ་་ a number divisible by 5″.

∴ Favourable Cases are 10, 15, 20, 25, 30, …… 90.

Let there be n in numbers.

∴ Tn = 90

∴ 10+ (n-1)5 = 90

⇒ (n-1)5=80

⇒ n-1 = 16

⇒ n = 17

∴ n(B) = 17

P(B) = \(\frac{n(B)}{n(S)}=\frac{17}{90}\)

Question 10. It is known that a box of 600 electric bulbs Contains 12 defective bulbs. One bulb is taken out at random from this box, what is the probability that it is a non-defective bulb?
Solution:

The number of non-defective bulbs in the box = 600-12=588

So, probability of taking out a non-defective bulb = \(\frac{588}{600}=\frac{49}{50}\)

=0.98

CBSE Solutions For Class 10 Maths

 

CBSE Class 10 Maths Solutions