Important Questions for Class 12 Chemistry Chapter 3 Chemical Kinetics

Chemical Kinetics

Question 1. For the reaction R → P. the concentration of a reactant changes from 0,03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
Answer:

Average rate of reaction = \(-\frac{\Delta[\mathrm{R}]}{\Delta \mathrm{t}}\)

⇒ \(-\frac{[R]_2-[R]_1}{t_2-t_1}=-\frac{0.02-0.03}{25} \mathrm{Mmin}^{-1}\)

⇒ \(-\frac{0.02-0.03}{25} \mathrm{Mmin}^{-1}\)

⇒ \(4 \times 10^{-4} \mathrm{M} \mathrm{Min}^{-1}\)

⇒ \(\frac{4 \times 10^{-4}}{60} \mathrm{Ms}^{-1}\)

⇒ \(6.67 \times 10^{-5} \mathrm{M} \mathrm{s}^{-1}\)

Question 2. In a reaction, 2A → Products, the concentration of A decreases from 0.5 mol L-1 to 0.4 mol L-1 in 10 minutes. Calculate the rate during this interval.
Answer:

⇒ \(-\frac{1}{2} \frac{\Delta[\mathrm{A}]}{\Delta t}=-\frac{1}{2} \frac{[\mathrm{A}]_2-[\mathrm{A}]_1}{\mathrm{t}_2-\mathrm{t}_1}\)

⇒ \(-\frac{1}{2} \frac{[0.4-0.5]}{10}=-\frac{1}{2} \frac{-0.1}{10}\)

⇒ 0.005 mol L-1 min-1 = 5 × 10-3 M min-1

Question 3. For a reaction, A + B → Product; the rate law is given by, r = K[ A]1/2[B]2 . What is the order of the reaction?
Answer:

The order of the reaction, \(\frac{1}{2}+2=2 \frac{1}{2}=2.5\)

Question 4. The conversion of molecules X to Y follows second-order kinetics. If the concentration of X is increased to three times how will it affect the rate of formation of Y?
Answer:

The order of reaction is defined as the sum of the powers of concentrations in the rate law.

The rate of second-order reaction can be expressed as rate = k[A]2

The reaction X → Y follows second-order kinetics.

Therefore, the rate equation for this reaction will be:

Rate = k [ X ]2

Let [X] = a mol L-1 . then equation (l) can be written as:

Rale = k [a]2 = ka2

If the concentration of X is increased to three times, then [X] = 3a mol L-1

Now, the rate equation will be ;

Rate = k [3a]2 = 9(ka2)

Hence, the rate of formation will increase by 9 times,

Read and Learn More Class 12 Chemistry with Answers Chapter Wise

Question 5. A first-order reaction has a rate constant of 1.15 × 10-3 S-1. How long will 5g of this reactant take to reduce to 3g?
Answer:

We know that for a 1st order reaction

⇒ \(t=\frac{2.303}{k} \log \frac{[R]_0}{[R]}=\frac{2.303}{1.15 \times 10^{-3}} \log \frac{5}{3}\)

⇒ \(\frac{2.303}{1.15 \times 10^{-3}} \times 0.2219=444.38 \mathrm{~s}=444 \mathrm{~s}\)

CBSE Class 12 Chemistry Chapter 3 Chemical Kinetics Important Question And Answers

Question 6. The time required to decompose SO2Cl2 to half of its initial amount is 60 minutes. If decomposition is a first-order reaction, calculate the rate constant of the reaction.
Answer:

We know that fora 1st order reaction, \(t_{1 / 2}=\frac{0.693}{k}\)

It is given that t1/2 = 60 min

⇒ \(k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{60}=0.01155 \mathrm{~min}^{-1}=1.155 \times 10^{-2} \mathrm{~min}^{-1}\)

Question 7. What will be the effect of temperature on the rate constant?
Answer:

The rate constant of a reaction is nearly doubled with a 10°C rise in temperature. However, the exact dependence of the rate of a chemical reaction on temperature is given by the Arrhenius equation, k =Ae-Ea/RT

Where A is the Arrhenius factor or the frequency factor

T is the temperature

R is the gas constant

Ea is the activation energy

Question 8. The rate of the chemical reaction doubles for an increase of 10 K in an absolute temperature from 298 K. Calculate Ea.
Answer:

It is given that

T1 = 298 K

T2 = (298 + 10) K = 308 K

We also know that the rate of the reaction doubles when temperature is increased by 10°.

Therefore, let us take the value of k1= k and that k2 = 2k

Also, R = 8.314 JK-1 mol-1

Now, substituting these values in the equation:

⇒ \(\log \frac{k_2}{k_1}=\frac{E_a}{2.303 R}\left[\frac{T_2-T_1}{T_1 T_2}\right]\)

We get:

⇒ \(\log \frac{2 k}{k}=\frac{E_a}{2.303 \times 8.314}\left[\frac{10}{298 \times 308}\right] \Rightarrow \log 2=\frac{E_2}{2.303 \times 8.314}\left[\frac{10}{298 \times 308}\right]\)

⇒ \(E_a=\frac{2.303 \times 8.314 \times 298 \times 308 \times \log 2}{10}\)

⇒ 52897.78 J mol-1 = 52.9 kJ mol-1

Question 9. The activation energy for the reaction 2HIg → H2+ I2(g) is 209.5 kJ mol-1 at 581 K. Calculate the fraction of molecules of reactant having energy equal to or greater than the activation energy.
Answer:

The fraction of molecules of reactants having energy equal to or greater than activation energy is given as:

⇒ \(\mathrm{x}=\mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}\)

⇒ In x = -Ea/RT

⇒ \(\log x=\frac{-E_a}{2.303 R T}\)

⇒ \(\log x=\frac{209500 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303 \times 8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times 581}=-18.8323\)

Now, x = Anti log (-18.8323)

= 1.471 × 10-19

Question 10. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
Answer:

  1. 3NO(g) → N2O(g) ; Rate = k[NO]2
  2. H2O2(aq) + 31 (aq.) + H+ → 2H2O(I) + I3 ; Rate = k[H2O)][I]
  3. CH3CHO(g) → CH4(g) + CO(g) : Rate = k[CH3CHO]3/2
  4. C2H5Cl(g) → C2H2(g) + HCI(g) : Rate = k[C2H5Cl]

Answer:

Given rate = k[NO]2

Therefore, the order of the reaction = 2

Dimension of k = \(\frac{\text { Rate }}{[\mathrm{NO}]^2}=\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^2}=\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol}^{-2} \mathrm{~L}^{-2}}=\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}\)

Give rate = k[H2O][I]

Therefore, the order of the reaction = 2

Dimension of k = \(\frac{\text { Rate }}{\left[\mathrm{H}_2 \mathrm{O}_2\right]\left[\mathrm{I}^{-}\right]}=\frac{\mathrm{molL}^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{molL}^{-1}\right)\left(\mathrm{molL}^{-1}\right)}=\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}\)

Given rate = k[CHCHO]3/2

Therefore, order of reaction = \(\frac{3}{2}\)

⇒ \(\text { Dimension of } \mathrm{k}=\frac{\text { Rate }}{\left[\mathrm{CH}_3 \mathrm{CHO}\right]{\frac{3}{2}}}=\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{\frac{3}{2}}}=\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol}^{\frac{3}{2}} \mathrm{~L}^{-\frac{3}{2}}}=\mathrm{L}^{\frac{1}{2}} \mathrm{~mol}^{-\frac{1}{2}} \mathrm{~s}^{-1}\)

Given rate- k[C2H5Cl]

Therefore, the order of the reaction = 1

⇒ \(\text { Dimension of } \mathrm{k}=\frac{\text { Rate }}{\left[\mathrm{C}_2 \mathrm{H}_5 \mathrm{Cl}\right]}=\frac{\mathrm{molL}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol} \mathrm{~L}^{-1}}=\mathrm{s}^{-1}\)

Question 11. For the reaction: 2A + B → A2B the rate = k [A][B]2 with k = 2.0 × 10-6 mol-2 L2S-1. Calculate the initial rate of the reaction when [A] = 0.1 mol L-1. [B] = 0.2 mol L-1. Calculate the rate of reaction after fAJ is reduced to 0.06 mol L-1.
Answer:

The initial rate of the reaction is Rate = k[A][B]2 = (2.0 × 10-6 mol-2 L2 S-1) (0.1 mol L-1) (0.2 mol L-1)2 = 8.0 × 10-9 mol -2 L2 s-1 when [A] is reduced from 0.1 mol L-1 to 0.06 mol-1, the concentration of A reacted = (0.1 -0.06) mol L-1 =0.04 mol L-1.

Therefore, concentration of B reacted \(=\frac{1}{2} \times 0.04 \mathrm{~mol} \mathrm{~L}^{-1}=0.02 \mathrm{~mol} \mathrm{~L}^{-1}\)

Then, a concentration of B is available. |B] = (0.2 – 0.02) mol L-1 = 0. 1 8 mol L-1 After [A] is reduced to 0.06 mol L-1. the rate of the reaction is given by.

Rate = k(A][B]2 = (2.0 × 10-6 mol-2 L2 s-1) (0.06 mol L-1) (0.18 mol L-1)2 = 3.88 × 10 mol L-1s-1.

Question 12. The decomposition of NH3, on the platinum surface is an order reaction. What is the rate of production of N2, and H2 if k = 2.5 × 10-4 mol liter s-1?
Answer:

2NH3 → N2 + 3H2

⇒ \(\text { Rate of reaction }(\mathrm{r})=-\frac{1}{2} \frac{\mathrm{d}\left[\mathrm{NH}_3\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{N}_2\right]}{\mathrm{dt}}=\frac{1}{3} \frac{\mathrm{d}\left[\mathrm{H}_2\right]}{\mathrm{dt}}\)

Rate (r) = k[NH3]° = k

(∵ zero order reaction)

= 2.5 × 10-4

⇒ \(\frac{\mathrm{d}\left[\mathrm{N}_2\right]}{\mathrm{dt}}=\mathrm{r}=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~s}^{-1}\)

⇒ \(\frac{\mathrm{d}\left[\mathrm{H}_2\right]}{\mathrm{dt}}=3 \mathrm{r}=3 \times 2.5 \times 10^{-4}=7.5 \times 10^{-4} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{sec}^{-1}\)

Question 13. The decomposition of dimethyl ether leads to the formation of CH4, H2, and CO, and the reaction rate is given by: Rate = k [ CH3OCH3]3/2 The rate of reaction is followed by an increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether i.c., Rate = k[PCH3OCH3],3/2 If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?
Answer:

⇒ \(\mathrm{CH}_3 \mathrm{OCH}_3 \longrightarrow \mathrm{CH}_4+\mathrm{CO}+\mathrm{H}_2\)

Rate = k(CH3OCH3]3/2; = k[P(CH3OCH3)]3/2

unit of rate = bar min-1

⇒ \(\text { Unit of } \mathrm{K}=\frac{\text { Rate }}{\left[\mathrm{P}_{\mathrm{CH}_3 \mathrm{OCH}_3}\right]^{3 / 2}}=\frac{\text { bar } \mathrm{min}^{-1}}{\text { bar }^{3 / 2}}=\mathrm{bar}^{-1 / 2} \mathrm{~min}^{-1}\)

Question 14. Mention the factors that affect the rate of a chemical reaction.
Answer:

The important factors on which the rate of a chemical reaction depends are

  1. Nature of the reacting species.
  2. Concentration of the reacting species.
  3. The temperature at which a reaction proceeds.
  4. The surface area of the reactants,
  5. Presence of a catalyst

Question 15. A reaction is of second order concerning a reactant. How is its rate affected if the concentration of the reactant is (1) doubled and (2) reduced to half?
Answer:

Given rate (r0 ) = K [A]2

If [A] is doubled: \(r_1=k[2 A]^2\)

r1 = 4r0

If [A] is reduced to half: \(\mathrm{r}_2=\mathrm{k}\left[\frac{\mathrm{A}}{2}\right]^2\)

⇒ \(r_2=\frac{1}{4} r_0\)

Question 16. What is the effect of temperature on the rate constant, of a reaction? How can this temperature effect on the rate constant be represented quantitatively?
Answer:

The rate constant is nearly doubled with a rise in temperature by 100C for a chemical reaction.

The temperature effect on the rate constant can be represented quantitatively by Arrhenius equation, k = Ac-Ea/RT

⇒ \(2.303 \log \frac{\mathrm{K}_2}{\mathrm{~K}_1}=\frac{\mathrm{E}_a}{\mathrm{R}}\left[\frac{\mathrm{T}_2-\mathrm{T}_1}{\mathrm{~T}_1 \mathrm{~T}_2}\right]\)

where K is the rate constant at the temperature

A is the Arrhenius parameter,

R is the gas constant,

T is the temperature,

and Ea is the energy of activation which is always positive.

Question 17. In a pseudo-first-order hydrolysis of ester in water, the following results were obtained:

Chemical Kinetics Pseudo First Order Hydrolysis Of Ester In Water

  1. Calculate the average rate of reaction between the time interval 30 to 60 seconds.
  2. Calculate the pseudo-first-order rate constant for the hydrolysis of ester.

Answer:

The average rate of reaction between the time interval 30 to 60 seconds

⇒ \(=\frac{\mathrm{d}[\text { Ester }]}{\mathrm{dt}}=-\frac{(0.17-0.31)}{60-30}=\frac{-(-0.14)}{30}=4.67 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)

For a pseudo-first-order reaction.

⇒ \(\text { For } t=30 s, \quad k_1=\frac{2.303}{30} \log \frac{0.55}{0.31}=1.911 \times 10^{-2} \mathrm{~s}^{-1}\)

⇒ \(\text { For } \mathrm{t}=60 \mathrm{~s}, \quad \mathrm{k}_2=\frac{2.303}{60} \log \frac{0.55}{0.17}=1.957 \times 10^{-2} \mathrm{~s}^{-1}\)

⇒ \(\text { For } \mathrm{t}=90 \mathrm{~s}, \quad \mathrm{k}_3=\frac{2.303}{90} \log \frac{0.55}{0.85}=2.075 \times 10^{-2} \mathrm{~s}^{-1}\)

Then, average rate constant, k = \(\frac{k_1+k_2+k_3}{3}\)

⇒ \(=\frac{\left(1.911 \times 10^{-2}\right)+\left(1.957 \times 10^{-2}\right)+\left(2.075 \times 10^{-2}\right)}{3}=1.98 \times 10^{-2} \mathrm{~s}^{-1}\)

Question 18. A reaction is first order in A and second order in B:

  1. Write the differential rate equation.
  2. How is the rate affected when the concentration of B is tripled?
  3. How is the rate affected when the concentration of both A and B are doubled?

Answer:

Rate = k [A]1[B]2

r0= K[A]1[B]2

r1,= k [A]1[3 B]2

r1, = 9 × r0

r0 = K [A]1[B]2

r0 = k [2A]1[2B]2

r2 = – 8 × r0

Question 19. In a reaction between A and B the initial rate of reaction (r0) was measured for different initial concentrations A and B as given below:

Chemical Kinetics Reaction Between A And B The Initial Rate Of Reaction

What is the order of the reaction concerning A and B?

Answer:

Let the order of the reaction concerning A be x and B be y.

Therefore, r0 = k [A]x[B]

5.07 x 10-5 =k [0.20]x[10.30]y _______ 1

5.07 x 10-5 = k [0.20]x[0.10]y _______ 2

1.43 x 10-4 = k [0.40]x[0.05]y _______ 3

Dividing equation (1) by (2), we obtain

⇒ \(\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}}=\frac{\mathrm{k}[0.20]^{\mathrm{x}}[0.30]^y}{\mathrm{k}[0.20]^{\mathrm{x}}[0.10]^y}\)

⇒ \(I=\frac{[0.30]^y}{[0.10]^y}\)

⇒ \(\left(\frac{0.30}{0.10}\right)^0=\left(\frac{0.30}{0.10}\right)^y\)

⇒ y = 0

Dividing equation (3) by (1), we obtain

⇒ \(\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}}=\frac{k[0.40]^x[0.05]^y}{k[0.20]^x[0.30]^y}\)

⇒ \(\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}}=\frac{[0.40]^x}{[0.20]^x}\)

[Since y = 0 [0.05]y =[0.30] = 1]

⇒ 2.821 =2x

⇒ log 2.821 = x log 2 (Taking log on both sides)

⇒ \(x=\frac{\log 2.821}{\log 2}=1.496=1.5\)

Hence, the order of the reaction concerning A is 1.5, and concerning B is zero.

Question 20. The following results have been obtained during the kinetic studies of the reaction: 2A + B → C + D

Chemical Kinetics Kinetic Studies Of The Reaction

Determine the rate law and the rate constant for the reaction.

Answer:

Let the order of the reaction concerning A be x and for B be y.

Therefore, the rate of the reaction is given by,

Rate = k[A]x[B]y

According to the question.

6.0 × 10-3 = k[0.1]x [0.1]y

7.2 × 10-2 = k[0.3]x[0.2]y

2.88 × 10-1 = k[0.3]x [0.4]y

2.40 × 10-2 = k[0.4]x [0.1]y

Dividing equation (4) by (1), we obtain

⇒ \(\frac{2.4 \times 10^{-2}}{6.0 \times 10^{-3}}=\frac{k[0.4]^x[0.1]^y}{k[0.1]^x[0.1]^y}\)

⇒ \(4=\frac{[0.4]^x}{[0.1]^x} \Rightarrow 4=\left(\frac{0.4}{0.1}\right)^x \Rightarrow(4)^1=4^x \Rightarrow x=1\)

Dividing equation (3) by (2), we obtain

⇒ \(\frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}}=\frac{k[0.3]^x[0.4]^y}{k[0.3]^x[0.2]^y}\)

⇒ \(4=\left(\frac{0.4}{0.2}\right)^y \Rightarrow 4=2^y \Rightarrow 2^2=2^y \Rightarrow y=2\)

Therefore, the rate law is

⇒ \(\text { Rate }=k[A][B]^2 \Rightarrow k=\frac{\text { Rate }}{[A][B]^2}\)

From experiment I, we obtain

⇒ \(\mathrm{k}=\frac{6.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}}{\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)^2}=6.0 \mathrm{~L}^2 \mathrm{~mol}^{-2} \mathrm{~min}^{-1}\)

From experiment 2, we obtain

⇒ \(\mathrm{k}=\frac{7.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}}{\left(0.3 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.2 \mathrm{~mol} \mathrm{~L}^{-1}\right)^2}=6.0 \mathrm{~L}^2 \mathrm{~mol}^{-2} \mathrm{~min}^{-1}\)

From exp. 3, we obtain,

⇒ \(\mathrm{k}=\frac{2.88 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}}{\left(0.3 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.4 \mathrm{~mol} \mathrm{~L}^{-1}\right)^2}=6.0 \mathrm{~L}^2 \mathrm{~mol}^{-2} \mathrm{~min}^{-1}\)

From exp. 4, we obtain,

⇒ \(\mathrm{k}=\frac{2.40 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}}{\left(0.4 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)^2}=6.0 \mathrm{~L}^2 \mathrm{~mol}^{-2} \mathrm{~min}^{-1}\)

Therefore, the rate is constant.

k = 6.0 L2 mol-2 min-1.

Question 21. The reaction between A and B is first order concerning A and zero order concerning B. Fill in the blanks in the following table:

Chemical Kinetics A And B Is First Order With Respect To A

Answer:

The given reaction is of the first order concerning A and zero order concerning B.

Therefore, the rate of the reaction is given by.

Rate = k [A]1[B]0

Rate = k [A]

From experiment 1. we obtain

2.0 × 10-2 mol L-1 min-1 = k (0.1 mol L-1)

k = 0.2 min-1

From experiment 2. we obtain

4.0 x 10-2 mol L-1 min-1 = 0.2 min-1 [A]

[A] = [0.2] mol L-1

From experiment 3, we obtain

Rate = 0.2 min-1 x 0.4 mol L-1 = 0.08 mol L-1 min-1

From experiment 4, we obtain

2.0 x 10-2 mol L-1 mim-1 = 0.2 min-1 [A]

[A] = 0. 1 mol L-1

Question 22. Calculate the half-life of a first-order reaction from their rate constants given below:

  1. 200 s-1
  2. 2 min-1
  3. 4 year-1

⇒ \(t_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{200 \mathrm{~min}^{-1}}=\mathbf{3 . 4} \times 10^{-3} \sec \text { (approx.) }\)

⇒ \(t_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{2 \mathrm{~min}^{-1}}=\mathbf{0 . 3 5} \mathbf{~ m i n} \text { (approx.) }\)

⇒ \(t_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{4 \text { year }^{-1}}=1.733 \times 10^{-1} \text { years (approx.) }\)

Question 23. The half-life for radioactive decay of 14C is 5730 years. An archaeological artifact containing wood had only 80% of the 14C found in a living tree. Estimate the age of the sample.
Answer:

Here, \(k=\frac{0.693}{t_2}=\frac{0.693}{5730} \text { years }^{-1}\)

⇒ \(t=\frac{2.303}{k} \log \frac{a}{(a-x)}\)

⇒ \(\mathrm{t}_{1 / 2} \text { of }{ }^{14} \mathrm{C}=5730 \mathrm{yr} \text {; }\)

Also, a = 1 00, (a – x) = 80

⇒ \(\mathrm{t}=\frac{2.303 \times 5730}{0.693} \log \frac{100}{80}=1845 \mathrm{yr} \)

Question 24. The experimental data for the decomposition of N2O3

⇒ \(\left[2 \mathrm{~N}_2 \mathrm{O}_5 \longrightarrow 4 \mathrm{NO}_2+\mathrm{O}_2\right]\) in the gas phase at 3 18 K are given below:

Chemical Kinetics The Experimental Data For Decomposition Of N2O5

  1. Plot [N2O5] against t.
  2. Find the half-life period for the reaction.
  3. Draw a graph between log [N2O5] and t.
  4. What is the rate law?
  5. Calculate the rate constant.
  6. Calculate the half-life period from k and compare it with (2).

Answer:

Chemical Kinetics Plot N2O5

Time corresponding to the concentration, \(\frac{1.630 \times 10^2}{2} \mathrm{molL}^{-1}=81.5 \mathrm{~mol} \mathrm{~L}^{-1}\) is the half life. From the graph, the half-life is obtained as 1450 s.

Chemical Kinetics Find The half Life Period For The Reaction

Chemical Kinetics The Graph The Half Life Is Obtained As 1450 s

The given reaction of the first order as the plot, log [N2O5] v/s t, is a straight line. Therefore, the rate law of the reaction is

Rate= k [N2O5]

From the plot, log [N2O5] v/st, we obtain

⇒ \(\text { Slope }=\frac{-2.46-(-1.79)}{3200-0}=\frac{-0.67}{3200}\)

Again .slope of the line of the plot log [N,05] v/s t is given by \(-\frac{k}{2.303}\)

Therefore, we obtain,

⇒ \(-\frac{k}{2.303}=-\frac{0.67}{3200}\)

k = 4.82 × 10-4,s-1

Half-life is given by,

⇒ \(t_{1 / 2}=\frac{0.639}{k}=\frac{0.693}{4.82 \times 10^{-4}} \mathrm{~s}\)

⇒ 1.438 x 10%- 1438s

This value, 1438 s. is very close to the value that was obtained from the graph.

Question 25. The rate constant for a first-order reaction is 60 s-1 How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?
Answer:

It is known that,

⇒ \(t=\frac{2.303}{k} \log \frac{a}{(a-x)}\)

⇒ \(\text { If } a=1 \text { then }(a-x)=\frac{1}{16}\)

⇒ \(\mathrm{t}=\frac{2.303}{60 \mathrm{~s}^{-1}} \log \frac{1}{1 / 16}=\mathbf{0 . 0 4 6 2} \mathrm{s}\)

Question 26. During a nuclear explosion, one of the products is 90Sr with a half-life of 28.1 years. If I pg of 90Sr was absorbed in the bones of a newborn baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically?
Answer:

Here, \(k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{28.1} y^{-1}\)

It is known that,

⇒ \(t=\frac{2.303}{k} \log \frac{[R]_0}{[R]} \quad \Rightarrow 10=\frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]} \Rightarrow 10=\frac{2.303}{\frac{0.693}{28.1}}(-\log [R])\)

⇒ \(\log [R]=-\frac{10 \times 0.693}{2.303 \times 28.1} \Rightarrow[R]=\text { anti } \log (-0.1071)\)

= anti log(T.8929) = 0.74814 μg

Therefore, 0.7814 μg of 90Sr will remain after 10 years,

Again,

⇒ \(t=\frac{2.303}{k} \log \frac{[R]_0}{[R]} \Rightarrow 60=\frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]} \Rightarrow \log [R]=-\frac{60 \times 0.693}{2.303 \times 28.1}\)

[R] = antilog (-0.6425) = 0.2278 μg

Therefore, 0.2278 μg of 90Sr will remain after 60 years.

Question 27. For a first-order reaction, show that the time required for 99% completion is twice the time required for the completion of 90% of the reaction.
Answer:

For a first-order reaction, the time required for 99% completion is

⇒ \(t_1=\frac{2.303}{k} \log \frac{100}{100-99}=\frac{2.303}{k} \log 100=2 \times \frac{2.303}{k}\)

For a first-order reaction, the time required for 90% completion is

⇒ \(t_2=\frac{2.303}{k} \log \frac{100}{100-90}=\frac{2.303}{k} \log 10=\frac{2.303}{k}\)

Therefore, t1 = 2t2

Hence, the time required for 99% completion of a first-order reaction is twice the time required for the completion of 90% of the reaction.

Question 28. A first-order reaction takes 40 min for 30% decomposition. Calculate t1/2.
Answer:

For a first-order reaction,

⇒ \(t=\frac{2.303}{k} \log \frac{[R]_0}{[R]}\)

⇒ \(\mathrm{k}=\frac{2.303}{40 \mathrm{~min}} \log \frac{100}{100-30}=\frac{2.303}{40 \mathrm{~min}} \log \frac{10}{7}=8.918 \times 10^{-3} \mathrm{~min}^{-1}\)

Therefore. t1/2 of the decomposition reaction is

⇒ \(t_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{8.918 \times 10^{-3}} \min =77.7 \mathrm{~min} \text { (approx.) }\)

Question 29. For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained.

Chemical Kinetics The Decomposition Of Azoisopropane To Hexane And Nitrogen

Calculate the rate constant.

Answer:

The decomposition of azoisopropane to hexane and nitrogen at 543 K is represented by the following equation.

(CH3)2 CHN = NCH (CH3)2(g → N2(g) + C6H14(g)

Chemical Kinetics Decomposition Of Azoisopropane To Hexane And Nitrogen

After time, t, total pressure, Pt = (P0– p) + p + p

Pt = P0+p

⇒  p = Pt-P0

Therefore, P0 – p = P0 (Pt – P0) = 2P0 – P1.

For a first-order reaction,

⇒ \(k=\frac{2.303}{t} \log \frac{P_0}{P_0-x}=\frac{2.303}{t} \log \frac{P_0}{2 P_0-P_t}\)

When t = 360 s,

⇒ \(\mathrm{k}=\frac{2.303}{360 \mathrm{~s}} \log \frac{35.0}{(2 \times 35.0-54.0)}=2.175 \times 10^{-3} \mathrm{~s}^{-1}\)

When t = 720 s,

⇒ \(\mathrm{k}=\frac{2.303}{720 \mathrm{~s}} \log \frac{35.0}{2 \times 35.0-63.0}=2.235 \times 10^{-3} \mathrm{~s}^{-1}\)

Hence, the average value of the rate constant is

⇒ \(\mathrm{k}=\frac{\left(2.175 \times 10^{-3}\right)+\left(2.235 \times 10^{-3}\right)}{2} \mathrm{~s}^{-1}=2.205 \times 10^{-3} \mathrm{~s}^{-1}\)

Question 30. The following data were obtained during the first-order thermal decomposition of SO2Cl2, at a constant volume.

⇒ \(\mathrm{SO}_2 \mathrm{Cl}_2(\mathrm{~g}) \longrightarrow \mathrm{SO}_2(\mathrm{~g})+\mathrm{Cl}_2(\mathrm{~g})\)

Chemical Kinetics Calculate The Rate Of The Reaction When Total Pressure

Calculate the rate of the reaction when the total pressure is 0.65 atm.
Answer:

The thermal decomposition of SO2Cl2, at a constant volume, is represented by the following equation.

⇒\(\mathrm{SO}_2 \mathrm{Cl}_2(\mathrm{~g}) \longrightarrow \mathrm{SO}_2(\mathrm{~g})+\mathrm{Cl}_2(\mathrm{~g})\)

Chemical Kinetics Thermal Decomposition Of SO2Cl2 At A Constant Volume

After time, t, total pressure, P, = (P0- p) + p + p

⇒ P1 = P0+P

⇒ P = P1-P0

Therefore, P0– p = P0– (Pt – P2) = 2P0– P1,

For a first-order reaction,

⇒ \(\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{P}_0}{\mathrm{P}_0-\mathrm{x}}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{P}_0}{2 \mathrm{P}_0-\mathrm{P}_{\mathrm{t}}}\)

When t = 100 s, \(\mathrm{k}=\frac{2.303}{100 \mathrm{~s}} \log \frac{0.5}{2 \times 0.5-0.6}=2.231 \times 10^{-3} \mathrm{~s}^{-1}\)

When Pt = 0.65 atm, P0 + p- 0.65

p = 0.65- P0 = 0.65- 0.5 = 0. 15 atm

Therefore, when the total pressure is 0.65 atm, the Pressure of SOCl2

PSO2Cl2= P0– P = 0-5 – 0.15 = 0.35 atm

Therefore, the rate of equation, when total pressure is 0.65 atm, is given by,

Rate = k (pSO2Cl2) = (2.23 × 10-3 s-1 ) (0.35 atm) = 7.8 × 10-4 atm s-1

Question 31. The rate constant for the decomposition of N2O5 at various temperatures is given below:

Chemical Kinetics In k and 1 By T And Calculate The Values.

Draw a graph between In k and 1/T and calculate the values of A and Ea. Predict the rate constant at 30° and 50°C.
Answer:

For the given data, we obtain

Chemical Kinetics In k and 1 By T And Calculate The Values

Chemical Kinetics Graph Between In k And 1 By T And Calculate The Values Of A And Ea

The slope of the line.

⇒ \(\frac{y_2-y_1}{x_2-x_1}=12.301 K\)

According to Arrhenius’s equations. Slope = \(-\frac{E_a}{R}\)

⇒ \(\mathrm{E}_{\mathrm{a}}=- \text { Slope } \times \mathrm{R}=-(-12.301 \mathrm{~K}) \times\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)=102.27 \mathrm{~kJ} \mathrm{~mol}^{-1}\)

Again, In k = In \(A-\frac{E_a}{R T}\)

In A = In \(k+\frac{E_a}{R T}\)

When T = 273 K,

In k =-7,147

Then, In A = \(-7.147+\frac{102.27 \times 10^3}{8.314 \times 273}=37.911\)

Therefore, A = 2.91 x 1016

When T = 30 + 273 K = 303 K

⇒ \(\frac{1}{\mathrm{~T}}=0.0033 \mathrm{~K}=3.3 \times 10^{-3} \mathrm{~K}\)

Then, at \(\frac{1}{\mathrm{~T}}=3.3 \times 10^{-3} \mathrm{~K} \text {,}\)

In k = -2.8

Therefore, k = 6.08 x 10~2 s-1

Again, when T = 50 + 273 K = 323 K.

⇒ \(\frac{1}{\mathrm{~T}}=0.0031 \mathrm{~K}=3.1 \times 10^{-3} \mathrm{~K}\)

Then, at \(\frac{1}{\mathrm{~T}}=3.1 \times 10^{-3} \mathrm{~K} \text {, }\)

In k = -0.968

Therefore, k = 0.38s-1

Question 32. The rate constant for the decomposition of hydrocarbons is 2.418 x 10-5 s-1 at 546 K. If the energy of activation is 179.9 KJ/mol, what will be the value of the pre-exponential factor?
Answer:

According to the Arrhenius equation,

⇒ \(\mathrm{k}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}} \Rightarrow{In} \mathrm{k}={In} \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}\)

⇒ \(\log \mathrm{k}=\log \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R} T}\)

⇒ \(\log \mathrm{A}=\log \mathrm{k}+\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}\)

⇒ \(=\log \left(2.418 \times 10^{-5} \mathrm{~s}^{-1}\right)+\frac{179.9 \times 10^3 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303 \times 8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1} \times 546 \mathrm{~K}}\)

= (0.3855 – 5) + 1 7.2082 = 12,59 17

Therefore, A = antilog ( 12.5917) = 3.9 x 1012 s-1

Question 33. Consider a certain reaction A → Products with k = 2.0 x 10-2 s -1. Calculate the concentration of A remaining after 100s if the initial concentration of A is 1.0 mol L-1.
Answer:

Since the unit of k is s-1. the given reaction is a first-order reaction.

Therefore, \(k=\frac{2.303}{t} \log \frac{[\mathrm{A}]_0}{[\mathrm{~A}]}\)

⇒ \(2.0 \times 10^{-2} \mathrm{~s}^{-1}=\frac{2.303}{100 \mathrm{~s}} \log \frac{1.0}{[\mathrm{~A}]}\)

⇒ \(2.0 \times 10^{-2} \mathrm{~s}^{-1}=\frac{2.303}{100 \mathrm{~s}}(-\log [\mathrm{A}])\)

⇒ \(\log [A]=\frac{-2.0 \times 10^{-2} \times 100}{2.303}\)

⇒ \([A]={anti} \log \left(\frac{-2.0 \times 10^{-2} \times 100}{2.303}\right)=0.135 \mathrm{~mol} \mathrm{~L}^{-1}\)

Hence, the remaining concentration of A is 0,135 mol L-1.

Question 34. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with t1/2 = 3,00 hours. What fraction of the sample of sucrose remains after 8 hours?
Answer:

For a first order reaction, k = \(\frac{2.303}{t} \log \frac{[R]_0}{[R]}\)

It is given that, t1/2 = 3.00 hours

Therefore, k = \(\frac{0.693}{t_{1 / 2}}=\frac{0.693}{3} h^{-1}=0.231 h^{-1}\)

Then, \(0.231 \mathrm{~h}^{-1}=\frac{2.303}{8 \mathrm{~h}} \log \frac{[\mathrm{R}]_0}{[\mathrm{R}]}\)

⇒ \(\log \frac{[\mathrm{R}]_0}{[\mathrm{R}]}=\frac{0.23 \mathrm{Ih}^{-1} \times 8 \mathrm{~h}}{2.303}\)

⇒ \(\frac{[R]_0}{|R|}={anti} \log (0.8024)\)

⇒ \(\frac{[\mathrm{R}]_0}{[\mathrm{R}]}=6.3445\)

⇒ \(\frac{[\mathrm{R}]}{[\mathrm{R}]_0}=0.1576 \approx 0.158\)

Hence, the fraction of the sample of sucrose that remains after 8 hours is 0.158.

Question 35. The decomposition of hydrocarbon follows the equation k = (4.5 ¹ 1011 s-1) e-28000 K/T. Calculate E,
Answer:

The given equation is k = (4.5 × 1011 s-1) e-28000 K/T ______ 1

Arrhenius equation is given by, k – Ae-Ea/RT ______ 2

From equation (1) and (2). we obtain

⇒ \(\frac{E_a}{R T}=\frac{28000}{T}\)

E2 = R × 28000 K = 8.3141 K-1 mol-1 × 28000 K = 2327921 J mol-1 = 232.792 kJ mol-1

Question 36. The following equation gives the rate constant for the first-order decomposition of H2O2: log k = 14.34- 1.25 × 104 K/T. Calculate E for this reaction and at what temperature will its half-period be 256 minutes?
Answer:

Arrhenius equation is given by.

⇒ \(\mathrm{k}=\mathrm{Ae}^{-\mathrm{E}_a / \mathrm{RT}}\)

⇒ \(\text { In } k={In} A-\frac{E_a}{R T}\)

⇒ \(\log \mathrm{k}=\log \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}\) ______ 1

The given equation is, log k = 14.34 – 1.23 x 104 K/T _______ 2

From equation (1) and (2), we obtain

⇒ \(\frac{\mathrm{E}_{\mathrm{i}}}{2.303 \mathrm{RT}}=\frac{1.25 \times 10^4 \mathrm{~K}}{\mathrm{~T}}\)

Ea = 1 .25 x 1 04 K × 2.303 xR = 1 .25 × 104 K × 2.303 × 8.314 K-1 mol-1

= 239339.3 J mol-1 = 239.34 kJ mol-1

Also, when t1/2= 256 minutes,

⇒ \(\mathrm{k}=\frac{0.693}{\mathrm{t}_{1 / 2}}=\frac{0.693}{256}=2.707 \times 10^{-3} \mathrm{~min}^{-1}=4.51 \times 10^{-5} \mathrm{~s}^{-1}\)

It is also given that, log k = 14.34- 1.25 x 104 K/T

⇒ \(\log \left(4.51 \times 10^{-5}\right)=14.34-\frac{1.25 \times 10^4}{T}\)

⇒ \(0.654-5=14.34-\frac{1.25 \times 10^4 \mathrm{~K}}{\mathrm{~T}}\)

⇒ \(\frac{1.25 \times 10^4 \mathrm{~K}}{\mathrm{~T}}=18.686\)

⇒ \(\mathrm{T}=\frac{1.25 \times 10^4 \mathrm{~K}}{18.686}=668.95 \mathrm{~K}=669 \mathrm{~K}\)

Question 37. The decomposition of A into product has a value of k as 4.5 x 103s_1 at 10°C and energy of activation 60 kJ mol-1. At what temperature would k be 1.5 x 104 s-1?
Answer:

From Arrhenius equation, we obtain,

⇒ \(\log \frac{k_2}{k_1}=\frac{E_a}{2.303 R}\left(\frac{T_2-T_1}{T_1 T_2}\right)\)

⇒ \(\log \frac{1.5 \times 10^4}{4.5 \times 10^3}=\frac{6.0 \times 10^4 \mathrm{~J} \mathrm{~mol}^{-1}}{2.303 \times 8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}}\left(\frac{\mathrm{T}_2-283}{283 \mathrm{~T}_2}\right)\)

⇒ \(0.5229=3133.627\left(\frac{\mathrm{T}_2-283}{283 \mathrm{~T}_2}\right)\)

⇒ \(\frac{0.5229 \times 283 \mathrm{~T}_2}{3133.627}=\mathrm{T}_2-283\)

⇒ 0.9528 T2 = 283

⇒ T2 = 297.019 K = 297 K = 24° C

Hence, k would be 1.5 x 104 s-1 at 24° C

Question 38. The time required for 10% completion of a first-order reaction at 298K is equal to that required for its 25% completion at 308 K. If the value of A is 4 x 1010 s-1. Calculate k at 318 K and F.
Answer:

For a first-order reaction, \(t=\frac{2.303}{k} \log \frac{a}{a-x}\)

⇒ \(\text { At } 298 \mathrm{~K}, \mathrm{t}_1=\frac{2.303}{k_1} \log \frac{100}{90}=\frac{0.1054}{k_1}\)

⇒ \(\text { At } 308 \mathrm{~K}, \mathrm{t}_2=\frac{2.303}{\mathrm{k}_2} \log \frac{100}{75}=\frac{0.2877}{\mathrm{k}_2}\)

According to the question, t = t’

⇒ \(\frac{0.1054}{k_1}=\frac{0.2877}{k_2} \Rightarrow \frac{k_2}{k_1}=2.73\)

From the Arrhenius equation, we obtain

⇒ \(\log \frac{k_2}{k_1}=\frac{E_1}{2.303 R}\left(\frac{T_2-T_1}{T_1 T_2}\right)\)

⇒ \(\log (2.73)=\frac{E_a}{2.303 \times 8.314}\left(\frac{308-298}{298 \times 308}\right)\)

⇒ \(\mathrm{E}_{\mathrm{a}}=\frac{2.303 \times 8.314 \times 298 \times 308 \times \log (2.73)}{308-298}\)

⇒ 76640.26 J mol-1 = 76.64 Id mol-1

To calculate k at 318 K,

It is given that, A = 4 x 10-1 s-1, T = 318 K

Again, from the Arrhenius equation, we obtain

⇒ \(\log \mathrm{k}=\log \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R} T}=\log \left(4 \times 10^{10}\right)-\frac{76.6 \times 10^3}{2.303 \times 8.3\lceil 4 \times 318}\)

= (0.6021 + 10)- 12.5876 =- 1.9855

Therefore, k = Antilog (- 1.9855) = 1.05 x 10-1 s-1

Question 39. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.
Answer:

From Arrhenius equation, we obtain,

⇒ \(\log \frac{k_2}{k_1}=\frac{E_a}{2.303 R}\left(\frac{T_2-T_1}{T_1 T_2}\right)\)

It is given that, k2 = 4k1

T1 = 293 K: T2 = 313 K

Therefore, \(\log \frac{4 k_1}{k_1}=\frac{E_a}{2.303 \times 8.314}\left(\frac{313-293}{293 \times 313}\right)\)

⇒ \(0.6021=\frac{20 \times E_a}{2.303 \times 8.314 \times 293 \times 313}\)

⇒ \(\mathrm{E}_{\mathrm{a}}=\frac{0.6021 \times 2.303 \times 8.314 \times 293 \times 313}{20}\)

⇒ 52863.33 J mol-1 = 52.86 kJ mol-1

Hence, the required energy of activation is 52.86 kJ mol-1

Leave a Comment